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Overview, Charges, and Forces

Announcements
• Homework 1 is due 11:59 pm, on this Thursday, 8/29
• Questions will be asked about the syllabus on the exam
• Quiz 1 is due at 11:59 pm on Tuesday, 9/3. Open book, 20 minutes. (mostly conceptual

questions)

Overview
About electricity, magnetism and thermodynamics.

Lecture notes will be posted on ELMS before lectures.

Note-taking is encouraged to help your learning.

Exams closely follow the lectures, not necessarily the textbook.

This is a fast-paced course. Ask for help early.

Contact the professor via ELMS. (Refer to her as Prof. Girvan).

Office hours: Monday, 1-2 pm and Tuesday, 3:30-4:30 pm, or by appointment.

Homework will usually be due weekly via Expert TA. There may be different due dates for 010x
and 030x sections. Links to the assignments will also be accessible via ELMS.

One of the main ways you can understand physics is by doing the homework. You should focus
on being able to do the homework on your own.

You will have 2 closed-book midterm exams (with a letter single-sided formula sheet.) The higher
score will be 22% of your final grade, and your lower score will count as 15% of your final grade.

Slido will be used instead of PointSolutions for polling/clicker questions. They are ungraded.

Don’t cheat.

Practice exams will be given out with a worked-out answer key.

There are lots of office hours available (see slides/ELMS).

Chapter 5: Electric Charges and Fields

Electic Charge
Electric phenomena depend on charges
• There are two kinds of charge, positive and negative.
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• Electrons and protons, parts of atoms, are the basic charges of matter
• Usually, charges come from the transfer of electrons

How they behave:
• Two charges of the same type repel; opposite types attract
• charge can be transferred
• charge is conserved

Conductors and insulators
• Conductors are materials where charge moves easily
• Insulators are materials on which charge is immobile

Coulomb’s law
Like gravity, it’s an inverse square law.

|𝐹 | = 𝑘|𝑄1||𝑄2|
𝑟2

Experiment
Two untouched glass rods, brought together, do nothing.

What happens when both are rubbed with silk? Perhaps almost nothing, but they’re supposed
to repel each other because they have the same charge.

Plastic rubbed with wool and glass rubbed with silk will attract each other because they have
opposite charges.

The strength of the force between charged objects depends inversely on the square of the
distance (closer together objects have more of an effect).

Q1
What will happen if you put a neutral object near a charged object?

The neutral object will be attracted to the charged object.

This is because the charges in the neutral object will move around to have opposite charges
closer to the charged object.

Electric Charge and the structure of matter
The particles of the atom are the negative electrons, the positive protons, and the neutral
neutrons.

Protons and neutrons are in the nucleus.

Neutral atoms have the same number of protons and electrons.

Positive ions have electrons removed, and negative ions have excess electrons.

Conservation of charge
• The proton and the electron have the same magnitude charge.
• All charge is quantized into these units of charge
• The sum of all electric charges in a closed system is constant.

The SI union of charge is the coulomb:

𝑒 = 1.6 × 10−19 C 
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Insulators and Conductors
Charge spreads out on the surface of conductors but remains in a fixed location in/on insulators.

Charging and Discharging
If objects have different charges and they touch, they will exchange charges until they have the
same charge.

Grounding
Grounding removes excess charge by connecting charge to some object of large size.

This large object is called a ground and is seen as an infinite reservoir of electrons.

Charge Polarization
A charged rod held close to an electroscope will cause the leaves to repel each other by moving
charges toward the top of the electroscope, leaving similar charges on the bottom, causing the
leaves also on the bottom to repel each other.

When an object has this directional splitting of charge, it is called polarized. Charge polarization
is a slight separation of a neutral object’s positive and negative charges.

When the force causing this to happen leaves, it quickly returns to normal.

Charging by induction
You can use polarization to transfer charge.

1. Object B touches object A on top
2. Polarize the object A-object B system with a positively charged rod from above
3. Move Object B away from object A and the charged rod
4. Stop polarizing object A

The electric dipole
An electric dipole is a system of two charges with equal magnitude but opposite signs, sepa-
rated by a small distance.

When an insulator is brought near an external charge, all the individual atoms inside the
insulator become polarized. The many polarized atoms create a net polarization force, even
though the electrons can’t move.

Coulomb’s Law
The magnitude of the electric force between two point charges is directly proportional to the
product of their charges and inversely proportional to the square of the distance between them.

|𝐹 | = 𝑘|𝑄1||𝑄2|
𝑟2

𝑘 = 8.99 × 109 N m 2/ C2

Something to note: this is applied to point charges, not to whole objects.
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Example

Notation
⃗𝐹12 = Force by 1 on 2 ⃗𝑟12 = Vector from 1 to 2

Summary: Charge Basics
• Two kinds of charge: positive and negative
• Like charges repel, opposite charges attract.
• Neutral objects have an equal mixture of positive and negative charge
• Charge is quantized; it comes in multiples of the value of an electron
• Materials can be separated into two types: conductors, where charge can move, and insulators,

where charge stays stationary
• the SI unit of the charge is the Coulomb, and 𝑒 = 1.6 ∗ 10−19  C
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The Field Model

The photo shows the patterns of iron filings formed when they are around a magnet.

This suggests that magnets create fields. This field is called a magnetic field. We will study the
related electric field in this chapter.

The field model states that charges interact via the electric field:
• The electric field exerts electric forces on charges
• Source charges create the field
• The field is composed of vectors at every point in space
• A charge does not feel its own field.

Point Charge Example
For positive source charges, the electric charge formed goes outward, and for negative charges,
it goes inward.

⃗𝐸 = 𝑘 𝑄
𝑟2 �̂�

Then, the force on a charge 𝑞 will be ⃗𝐹 = 𝑞 ⃗𝐸.

Electric fields make things simpler because the total electric field is just the sum of all electric
fields caused by source charges.
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Continuous Charge Distributions
What if the charge is continuous?

For macroscopic charged objects, like rods or disks, we can think of the charge as having a
continuous distribution.

A charged object is characterized by its charge density, the charge per length, area, or volume.

Then, you can sum the entire electric field with an integral.

Example: A ring of charge
A thin, ring-shaped object of radius 𝑎 holds a total charge +𝑄 distributed uniformly around it.
Determine the electric field at a point 𝑃  on its axis, at a distance 𝑥 from the center.

We can see that the energy is only along one axis, so we can ignore everything else.

We also know the total charge is 𝑄.
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The answer is

⃗𝐸 = 𝑘𝑄𝑥
(𝑎2 + 𝑥2)

3
2

What if 𝑥 ≫ 𝑎?

⃗𝐸 ≈ 𝑘𝑄𝑥
(𝑥2)

3
2
�̂� = 𝑘𝑄𝑥

𝑥3 = 𝑘𝑄
𝑥2 �̂�

It basically becomes a point charge!

With enough distance, anything becomes a point charge.

Btw whoever is reading this, I fucked up an example here (not pictured), see the slides for the
answer. I will probably do the example again myself but correctly.

Motion of a Charged particle in an Electric Field
The electric field exerts a force on a charged particle: ⃗𝐹 = 𝑞 ⃗𝐸.

This may cause the particle to accelerate.

If there are no other forces, this ⃗𝑎 = 𝑞
𝑚

⃗𝐸.
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In a uniform field, the acceleration is constant. 𝑎 = 𝑞 𝐸
𝑚 .

For example, if there is an electron moving to the right, you need a force to the left to stop it.
Because it is an electron, the field must be to the right to stop the electron.

Electric Field Lines
Electric Field lines are continuous curves tangent to the electric field vectors.

Closely spaced field lines indicate a greater field strength.

Electric field lines never cross, and go from positive charges to negative charges.

Electric Field
⃗𝐸 = 𝑘 𝑄

𝑟2 �̂�

�̂� is a unit vector that goes radially outwards from the charge, but often it’s easier to add the
direction afterwards, and just use the formula for the magnitude.

This formula then means that the direction of the field is radially outward for positive charges
and radially inward for negative charges:

The force on a charge of charge 𝑞 is then ⃗𝐹 = 𝑞 ⃗𝐸

Using Calculus
If we have something that isn’t a point charge, we can divide the total charge 𝑄 into many
smaller charges d𝑄. Then, ⃗𝐸 = ∫ 𝑘𝑟

𝑟2 d𝑄.

Often we will rewrite d𝑄 into a factor of something more relevant like d𝑥. For example, d𝑄 = 𝑄d𝑥
𝐿

Gauss’s Law
• Given a distribution of charge, we can enclose the charge in a surface.
• Given the distrubtion of the charge, we can find the distrubtion of charge on the surface.
• With that distrubtion of the surface, we can find the total charge enclosed within the surface.
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Examples
If we have a box with no charge inside of it, and the electric field is zero everywhere, the flux
is zero.

If we have negative charges inside the box, there will be inward pointing electric flux on the
surface.

If we have positive charges inside the box, there will be outward pointing electric flux on the
surface.

If there are both positive and negative charges in the box, the net flux is zero, but its inward
near the negative charge and outward near the positive charge.

If there is a positive charged surface nearby, there is flux on the surface, but the net charge
is zero.

The electric flux is linear with the amount of enclosed charge, and independent of the size of
the box.

Calculation
Φ𝑒 = ⃗𝐸 ⋅ ⃗𝐴

The dot is for the dot product.

⃗𝐴 = 𝐴�̂�

𝐴 is the area of the surface, and �̂� is vector normal to the surface.

Generally, this can be expressed as an integral for a surface 𝑆:

Φ𝑒 = ∫
𝑆

⃗𝐸 ⋅ d ⃗𝐴

Special Cases
If ⃗𝐸 is always tangent to the surface, the flux is zero.

IF ⃗𝐸 is always perpendicular to the surface and has the same magitude 𝐸 everywhere on the
surface, the flux is 𝐸𝐴.

Φ𝑒 = ∫
𝑆

⃗𝐸 ⋅ d ⃗𝐴 = ∫ 𝐸⟂ d𝐴 = ∫ 𝐸 cos(𝜙) d𝐴

𝐸⟂ is the perpendicular part of the electric field ⃗𝐸. 𝜙 is the angle with the normal vector.

Example: Sphere
Consider the flux through a sphere 𝑆 of radius 𝑟 around a point charge of charge 𝑞:

Φ𝑒 = ∮
𝑆

⃗𝐸 ⋅ d ⃗𝐴

= 𝐸𝐴sphere

We can say the above because of the special case with perpendicular to the surface.

𝑘 = 1
4𝜋𝜀0
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= 𝑞
(4𝜋𝜀0)𝑟2 (4𝜋𝑟2)

= 𝑞
𝜀0

We can see how the flux is independent of the size of the sphere.

Generalize
The electric flux through any arbitrary closed surface surrounding a point charge 𝑞 may be
broken up into spherical and radial pieces (calculus-style), and since the flux is size independent,
you can use multiple without a problem.

Therefore, the total flux through the surface is the same as above:

Φ𝑒 = 𝑞
𝜀0

The Formula

Φ𝑒 = ∮ ⃗𝐸 d ⃗𝐴 = 𝑄enclosed
𝜀0

Where 𝑄enclosed is the total charge enclosed by the surface.

This can be explained by having two spheres surrounding an outsider charge:

Exploiting Symmetries

Infinite Cylinder
Imagine you have a infinitely long, charged cylinder. What is the electric field?

What are the symmetries?

• Translating the rod in the direction the cylinder axis does nothing (it’s infinitely long!)
• Rotating the cylinder about the axis
• Mirroring along any plane perpendicular to the axis
• Mirroring along any plane on the axis
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Therefore:

Use Gauss’s law to find the electric field inside and outisde an infinitely long, uniformly charged
cylinder with radius 𝑅 and charge density 𝜌.

Find 𝐸(𝑟), where 𝑟 is the distance from the axis.

Case 1: 𝑟 > 𝑅

Construct the Gaussian surface 𝑆 around the cylinder with radius 𝑟 and length 𝐿.

We then can do the surface integral:

Φ𝑒 = ∮
𝑆

⃗𝐸 ⋅ d ⃗𝐸
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= Φends + Φsides

= 0 + 𝐸𝐴sides

= 𝐸(2𝜋𝑟𝐿)

But also:

Φ𝑒 = 𝑄enclosed
𝜀0

= 1
𝜀0

𝜌𝑉enclosed

Φ𝑒 = Φ𝑒

𝐸(2𝜋𝑟𝐿) = 1
𝜀0

𝜌𝑉enclosed

𝐸(2𝜋𝑟𝐿) = 1
𝜀0

𝜌𝜋𝑅2𝐿

𝐸 = 1
𝜀0

𝜌𝜋𝑅2𝐿 1
2𝜋𝑟𝐿

𝐸 = 𝜌𝜋𝑅2𝐿
2𝜀0𝜋𝑟𝐿

𝐸 = 𝜌𝑅2

2𝑟𝜀0

So then:

⃗𝐸 = 𝜌𝑅2

2𝑟𝜀0
�̂�

Where �̂� is the unit vector radataing from the cylinder’s axis.

Recap of Gauss’s Law

Φ𝑒 = ∮ ⃗𝐸 d ⃗𝐴 = 𝑄enclosed
𝜀0

Symmetries

Planar Symmetry
Example: an infinite sheet.

• Translation in any direction along the sheet
• Rotation about an axis perpendicular to the sheet
• Mirror through any perpendicular plane
• Mirror through a plane on the sheet.

Cylindrical Symmetry
Example: Infinite charged rod.

• Translation along the axis
• Rotation about the axis
• Mirror through a plane through the axis
• Mirror through a plane perpendicular to the axis
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Spherical Symmetry
Example: Uniformly charged sphere.

• Rotation around any axis that goes through the center of the sphere
• Mirror through any plane that contains the center point

Strategy for applying Gauss’s Law
1. Draw a Gaussian surface such that

1. It has the same symmetry as the electric field
2. The field is tangent or perpendicular to the surface at every point

Then, integrate!

Uniform charge densities
1. For a line: d𝑞 = 𝜆 d𝐿. 𝜆 is in units of charge per length.
2. For a surface: d𝑞 = 𝜎 d𝐴. 𝜎 is in units of charge per area.
3. For a volume: d𝑞 = 𝜌 d𝑉 . 𝜌 is in units of charge per volume.

Example
Consider a uniformly charged sphere with radius 𝑅 and total charge 𝑄. How much charge is
enclosed by a sphere of radius 𝑟, with 𝑟 < 𝑅.

The answer is 𝑄 𝑟3

𝑅3 .

Example
An infinite plane of charge with charge density +𝛿, the charge per unit area, lies in the 𝑥𝑦-plane.
Use Gauss’s Law to find the electric field above or below the plane.¹

The symmetries show that the charge is perpendicular to the plane.

We chose to use a cylinder because the cylinder only has three sides (convenient!).

Furthermore, the magnitude of the charge on the top and bottom is shown to be the same by
mirroring through the plane.

On the side, the charge is parallel, which means there is no flux (dot product is 0). On the top
and bottom, 𝐸 is perpendicular, and therefore ∮ ⃗𝐸 ⋅ d ⃗𝐴 = 𝐸𝐴, since the dot product is 1.

¹She used 𝜎 instead of 𝛿, but I had previously done this problem with 𝛿.
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Conductors with Gauss’s Law
Take a Gaussian surface just inside a conductor’s surface. Since there is no charge inside the
conductor, the flux is zero, and therefore 𝑄enclosed = 0.

Furthermore, the electric field on a conductor’s surface is perpendicular².

Then, a Gaussian surface extending through the surface of a conductor has a flux only through
the outer face.

The net flux is Φ𝐸 = 𝐴𝐸surface = 𝑄enclosed
𝜀0

Let 𝑄enclosed = 𝜂𝐴. Therefore, 𝐸surface = 𝜂
𝜀0

 and it is perpendicular to the surface.

We derived the field for a plane of charge:

𝐸 = 𝜎
2𝜀0

And for a conductor with surface charge density 𝜂:

𝐸 = 𝜂
𝜀0

By forming a charged plane out of a very thin conductor, we can see that the formulas agree
since, in that situation, 𝜂 = 𝜎

2 .

Holey conductor
Form a hole in a neutral conductor, and put a positive charge of value 𝑞 there.

²see slides for a diagram
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Charges remain on the edge only, and the positive charge will attract negative charges to the
edge of the hole, of charge −𝑞. Then, the charges on the outer surface will be charged 𝑞. This
is because the conductor was neutral, and therefore the sum of charges in the conductor will
remain 0.

This means for any surface that entirely is within a conductor has 𝑄enclosed = 0.

Example
A hollow metal sphere has an inner radius 𝑎 and an outer radius 𝑏. The hollow sphere has the
charge +2𝑄. A point charge +𝑄 sits at the center of the hollow sphere. Determine the electric
field in the regions 𝑟 < 𝑎, 𝑟 > 𝑏 and 𝑎 < 𝑟 < 𝑏.

𝑟 < 𝑎:

Φ𝑒 = 𝐸𝐴 = 𝑄encl
𝜀0

𝐸(4𝜋𝑟2) = +𝑄
𝜀0

𝐸 = 𝑄
4𝜋𝑟2𝜀0

𝑟 > 𝑏:

Φ𝐸 = 𝐸𝐴 = 𝑄encl
𝜀0

𝐸(4𝜋𝑟2) = +3𝑄
𝜀0

𝐸 = 3𝑄
4𝜋𝜀0𝑟2

𝑎 < 𝑟 < 𝑏:

𝐸 = 0

Φ𝑒 = 𝐸𝐴 = 𝑄encl
𝜀0

= 0

𝑄encl = 𝑄inner + 𝑄 = 0
→ 𝑄inner = −𝑄

𝑄inner + 𝑄outer = 2𝑄
−𝑄 + 𝑄outer = 2𝑄

𝑄outer = 3𝑄

Example
Consider a non-conducting sphere of radius 𝑟1 with a spherical cavity at its center of radius 𝑟0.
Assume the total charge 𝑄 is distributed uniformly in the “shell” (from 𝑟 = 𝑟0 → 𝑟1). Determine
the electric field as a function of 𝑟 for:
1. 𝑟 > 𝑟1
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𝐸𝐴 = 𝑄enclosed
𝜀0

= 𝑄
𝜀0

𝐸(4𝜋𝑟2) = 𝑄
𝜀0

𝐸 = 𝑄
4𝜋𝜀0𝑟2

2. 𝑟0 < 𝑟 < 𝑟1

𝐸𝐴 = 𝑄enclosed
𝜀0

𝐸(4𝜋𝑟2) = 𝑄
𝑉charge enclosed

𝑉charge
= 𝑄

4
3𝜋(𝑟3 − 𝑟3

0)
4
3𝜋(𝑟3

1 − 𝑟3
0)

=
𝑄(𝑟3 − 𝑟0)

𝑟3
1 − 𝑟3

0

𝐸 =
𝑄(𝑟3 − 𝑟0)

4𝜋𝑟2(𝑟3
1 − 𝑟3

0)
3. 𝑟 < 𝑟0

Important Equations So Far
Coulomb’s Law:

𝐹 = 𝑘𝑞1𝑞2
𝑟2 = 𝑘𝑞1𝑞2

4𝜋𝜀0𝑟2

Electric Field:

⃗𝐸 =
⃗𝐹

𝑞
, 𝐸 = 𝑘 𝑄

𝑟2

Superposition of Electric Fields:

⃗𝐸 = ⃗𝐸1 + ⃗𝐸2 + ⃗𝐸3 + ⋯

Continous charge distribution:

⃗𝐸 = 𝑘 ∫ 1
𝑟2 d𝑞

It is often useful to write d𝑞 in terms of some small length or area.

Flux for a flat area and uniform ⃗𝐸:

Φ𝐸 = ⃗𝐸 ⋅ ⃗𝐴

Flux in general:

Φ𝐸 = ∫ ⃗𝐸 ⋅ d ⃗𝐴

Gauss’s Law:

Φ𝐸 = ∮ ⃗𝐸 ⋅ d ⃗𝐴 = 𝑄enclosed
𝜀0
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You often want to construct a Gaussian surface such that the electric field is parallel or perpen-
dicular at all points. This makes calculating the integral via geometry far easier.

Energy Review
• The kinetic energy of a system, 𝐾 , is the sum of all kinetic energies 𝐾𝑖 = 1

2𝑚𝑖𝑣2
𝑖 , for all

particles in the system.
• The potential energy of the system, 𝑈 , is the interaction energy of the system
• The change in potential energy, Δ𝑈 , is the negation of the amount of work done by interaction

forces.
• If all forces involved are conservative, then the total energy of the system 𝐾 + 𝑈  remains

constant.

Analogy
Any conservative force can be given a potential energy. For gravity, this will be:

Δ𝑈 = −𝑊
𝑊 = 𝑚𝑔𝑦𝑖 − 𝑚𝑔𝑦𝑓

Therefore:

𝑈 = 𝑈0 + 𝑚𝑔𝑦

If an object falls, this means that Δ𝑈 < 0, and gravity did work, so 𝑊 > 0.

Potential Energy
A positive charge 𝑞 inside a capacitor speeds up as it falls toward the negative plate.

This force, 𝐹 = 𝑞𝐸, is constant because the electric field is also constant. Therefore, the work
is 𝑊 = 𝐹𝑑 = 𝑞𝐸(𝑠𝑖 − 𝑠𝑓).

Define 𝑠 as the perpendicular distance to the negative plate. Then, 𝑈elec = 𝑈0 + 𝑞𝐸𝑠.

Aside: Charged Plates
If you have two oppositely charged (infinite) plates with charge densities 𝜎 and −𝜎, the electric
field between the plates is 𝐸 = 𝜎

𝜀0
, and 0 outside the plates.

Work

𝑊 = ∫
pos𝑓

pos𝑖

⃗𝐹 ⋅ d ⃗𝓁

For the electric field, this becomes

𝑊 = 𝑞 ∫
pos𝑓

pos𝑖

⃗𝐸 ⋅ d ⃗𝓁

As always, Δ𝑈 = −𝑊 .

Example
Consider two like charges, 𝑞1 and 𝑞2, with 𝑞1 fixed.

Then, the work done by the electric field becomes:
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𝑊elec = ∫
𝑥2

𝑥1

𝐹1→2 d𝑥

= ∫
𝑥2

𝑥1

𝑘𝑞1𝑞2
𝑥2 d𝑥

= −𝑘𝑞1
𝑞2
𝑥

|
𝑥𝑟

𝑥1

This results in:

𝑈 = 𝑘𝑞1𝑞2
𝑟

This uses the zero point of infinitely far apart for similar reasons to why gravity does so.

Problem
An interaction between two elementary particles causes an electron and a positron to be shot
out in opposite directions with equal speeds. What speed must each have when they are 100
fm apart to escape each other?

We should use conservation of energy.

The final potential energy is 0 because we defined the zero point of an electric field’s effect to
be at infinity, which is when they have escaped.

1
2
𝑚𝑒𝑣2

𝑖 + 1
2
𝑚𝑒𝑣2

𝑖 + 𝑘𝑞1𝑞2
𝑟

= 1
2
𝑚𝑒𝑣2

𝑓 + 1
2
𝑚𝑒𝑣2

𝑓 + 𝑘𝑞1𝑞2
∞

1
2
𝑚𝑒𝑣2

𝑖 + 1
2
𝑚𝑒𝑣2

𝑖 + 𝑘𝑞1𝑞2
𝑟

= 0

𝑚𝑒𝑣2
𝑖 + 𝑘𝑞1𝑞2

𝑟
= 0

𝑚𝑒𝑣2
𝑖 = −𝑘(1𝑒−)(−1𝑒−)

𝑟

𝑣2
𝑖 = −𝑘(1𝑒−)(−1𝑒−)

𝑚𝑒𝑟

𝑣𝑖 = √−𝑘(1𝑒−)(−1𝑒−)
𝑚𝑒𝑟

𝑣𝑖 = √𝑘(1𝑒−)(1𝑒−)
𝑚𝑒𝑟

Therefore, 𝑣𝑖 = 5.03 × 107 𝑚
𝑠 .

Multiple Charges
Consider more point charges. Then, the potential energy is the sum of all the potential energies
due to all pairs of charges:

𝑈 = ∑
𝑖<𝑗

𝑘𝑞𝑖𝑞𝑗

𝑟𝑖,𝑗

Where 𝑟𝑖,𝑗 is the distance between 𝑞𝑖 and 𝑞𝑗.
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Problem
Three point charges, which are initially infinitely far apart, are placed at the corners of an
equilateral triangle with sides 𝑑. Two of the point charges are identical and have charge 𝑞. If
zero net work is required to place the charges in the corners of the triangle, what must the value
of the third charge be?

Initally, 𝑈 = 0

At the end, 𝑟𝑖,𝑗 = 𝑑.

∑
𝑖<𝑗

𝑘𝑞𝑖𝑞𝑗

𝑟𝑖,𝑗

= ∑
𝑖<𝑗

𝑘𝑞𝑖𝑞𝑗

𝑑

= 𝑘
𝑑
(𝑞1𝑞2 + 𝑞1𝑞3 + 𝑞2𝑞3)

= 𝑘
𝑑
(𝑞2 + 𝑞𝑞3 + 𝑞𝑞3)

= 𝑞𝑘
𝑑

(𝑞 + 2𝑞3)

𝑞𝑘
𝑑

(𝑞 + 2𝑞3) = 0

𝑞 + 2𝑞3 = 0
2𝑞3 = −𝑞

𝑞3 = −𝑞
2

Defining the Electric Potential
𝑉 , electric potential, is defined as:

𝑉 =
𝑈𝑞 + sources

𝑞

The SI unit for electric potential is the volt 𝑉 = 𝐽/𝐶 .

Therefore, the potential due to a point charge is:

𝑉 = 1
4𝜋𝜀0

𝑞
𝑟

𝑟 is the distance from the point charge to the place of measurement.

Like the electric field, the electric potential is independent of the test charge.

For a collection of point charges, simply sum the contribution from each point charge:

𝑉 = ∑
𝑖

1
4𝜋𝜀0

𝑞𝑖
𝑟𝑖

.

If you move in the direction of the electric field, the electric potential decreases, and opposite,
it decreases.
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The general relation between the field and potential can be constructed from work, resulting in:

Δ𝑉 = − ∫
𝑏

𝑎

⃗𝐸 ⋅ d ⃗𝑠

For the specific case of a uniform field, this simplifies to:

𝑉𝑏𝑎 = −𝐸𝑑

Equipotential surfaces are perpendicular to the electric field at all points.

As a charge moves through a changing electric potential, energy is conserved:

𝐾𝑓 + 𝑞𝑉𝑓 = 𝐾𝑖 + 𝑞𝑉𝑖

Therefore, if Δ𝑉 > 0, positive charges will slow down and if Δ𝑉 < 0, positive charges will speed
up.

This then means that the preferred position for a positive charge is the location that has the
most negative potential.

The reverse is true for negative charges.

Summary
• Electric force is conservative
‣ Δ𝐾 + Δ𝑈 = 0
‣ Δ𝑈 = −𝑊

• Work Defintion
‣ Δ𝑈 = −𝑊 = − ∫

⃗𝑓
⃗𝑖

⃗𝐹 ⋅ d ⃗𝑠

• Electric Potential
‣ Δ𝑉 = Δ𝑈

𝑞 = − ∫
⃗𝑓

⃗𝑖
⃗𝐸 ⋅ d ⃗𝑠

• For point charges
‣ 𝑈 = 𝑘𝑞1𝑞2

𝑟
‣ 𝑈 = ∑𝑖<𝑗

𝑘𝑞𝑖𝑞𝑗
𝑟𝑖→𝑗

‣ 𝑉 = 𝑘𝑞
𝑟

‣ 𝑉 = ∑𝑖
𝑘𝑞𝑖
𝑟𝑖

• For a charge distribution:
‣ 𝑉 = ∫ 𝑘

𝑟 d𝑞

• Find 𝐸 from 𝑉 :
‣ ⃗𝐸 = −(�̂�𝜕𝑉

𝜕𝑥 + 𝑗𝜕𝑉
𝜕𝑦 + �̂�𝜕𝑉

𝜕𝑧 )

A separation of charge creates an electric potential difference, because it creates an electric
field.

Example
A very long conducting cylinder of length 𝓁 of radius 𝑅0, 𝑅0 ≪ 𝓁, carries a uniform surface
charge density 𝜂. The cylinder is at an electric potential 𝑉0. Determine the potential, at points
far from the end, at a distance 𝑟 from the center of the cylinder for:
1. 𝑟 > 𝑅0
2. 𝑟 < 𝑅0
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Find 𝑉 (𝑟).

First we will find 𝐸(𝑟), using gauss’s law, assuming 𝑟 > 𝑅0:

Assume a cylinder wrapping the cylinder of length 𝐿 and of radius 𝑟.

Φ𝑒 = ∮ ⃗𝐸 ⋅ d ⃗𝐴 = 𝐸 × 2𝜋𝑟𝐿 = 𝑄enclosed
𝜀0

= (2𝜋𝑅0𝐿)𝜂
𝜀0

Therefore, overall:

⃗𝐸 = 𝜂𝑅0
𝜀0𝑟

�̂�

For 𝑟 < 𝑅0:

⃗𝐸 = 0

.

Find 𝑉  from 𝐸 for 𝑟 > 𝑅0.

Δ𝑉 = 𝑉𝑓 − 𝑉𝑖 = − ∫
⃗𝑓

⃗𝑖

⃗𝐸 ⋅ d ⃗𝑠

𝑉 (𝑟) − 𝑉0 = − ∫
𝑟

𝑅0

𝜂𝑅0
𝜀𝑟′ d𝑟′

𝑉 (𝑟) − 𝑉0 = −𝜂𝑅0
𝑡0

ln(𝑟′)|𝑟𝑅0

𝑉 (𝑟) = 𝑉0 − 𝜂𝑅0
𝑡0

ln( 𝑟
𝑅0

)

For 𝑟 < 𝑅0

Δ𝑉 = 𝑉𝑓 − 𝑉𝑖 = − ∫
⃗𝑓

⃗𝑖

⃗𝐸 ⋅ d ⃗𝑠

𝑉 (𝑟) − 𝑉0 = 0 → 𝑉 (𝑟) = 𝑉0

Furthermore, as a general point, the potential is constant in regions where ⃗𝐸 = 0.

Example
A finite rod of length 2𝐿 has a total charge 𝑞, distributed uniformly along its length. Consider
the rod as on the x-axis and centered at the origin. Thus, one endpoint is located at (−𝐿, 0),
and the other at (𝐿, 0). Define the electric potential to be zero at an infinite distance away from
the rod. Point 𝐴 is located at (0, 𝑦). What is 𝑉𝐴, the electric potential at point 𝐴?

𝑉 = 𝑘𝑞
2𝐿

ln(
√𝐿2 + 𝑦2 + 𝐿
√𝐿2 + 𝑦2 − 𝐿

)

Find 𝐸 from 𝑉
⃗𝐸 = −(�̂�𝜕𝑉

𝜕𝑥
+ 𝑗𝜕𝑉

𝜕𝑦
+ �̂�𝜕𝑉

𝜕𝑧
)
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Alternatively,

⃗𝐸 = −∇𝑉 (𝑥, 𝑦, 𝑧)

Example
Determine the electric field vector in a region of space if the potential varies as follows:

𝑉 = 𝑎𝑦2 + 𝑏𝑥𝑦 − 𝑐𝑥𝑦𝑧

Solution

⃗𝐸𝑥 = −𝜕𝑉
𝜕𝑥

= −(𝑏𝑦 − 𝑐𝑦𝑧) = 𝑐𝑦𝑧 − 𝑏𝑦

⃗𝐸𝑦 = −𝜕𝑉
𝜕𝑦

= −(2𝑎𝑦 + 𝑏𝑥 − 𝑐𝑥𝑧) = 𝑐𝑥𝑧 − 2𝑎𝑦 − 𝑏𝑥

⃗𝐸𝑧 = −𝜕𝑉
𝜕𝑧

= −(−𝑐𝑥𝑦) = 𝑐𝑥𝑦

Example
Continuing from the previous problem with the finite rod of length 2𝐿:

𝑉 = 𝑘𝑞
2𝐿

ln(
√𝐿2 + 𝑦2 + 𝐿
√𝐿2 + 𝑦2 − 𝐿

)

We then can know that 𝐸𝑦 = 𝑘𝑞
𝑦√𝑦2+𝐿2  by taking the derivative and using the symmetry of the

problem to get the direction. This gives the same answer as it done the traditional way.

Equipotential Surfaces
They are always the surface perpendicular to electric field vectors.

In conductors:
• When all charges are at rest:
‣ The surface of a conductor is an equipotential surface.
‣ The electric field outside a conductor is, therefore, perpendicular to the surface
‣ the entire volume of the conductor has the same potential as the surface.

Capacitors
Any two conductors separated by an insulator (or a vacuum) form a capacitor.

When the capacitor is charged, the conductors have equal magnitude but opposite signs, so
the net charge is zero on the capacitor.

A common way to charge a capacitor is to connect the conductors to opposite terminals of a
battery.

If we change the magnitude of the charge on each conductor, the potential difference between
conductors changes; however, the ratio of charge to potential difference does not change.

This ratio is called the capacitance of the capacitor:

𝐶 = 𝑄
𝑉𝑎𝑏

This is units of the farad: 1𝐹 = 1𝐶
𝑉 .
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Parallel-plate capacitor
A parallel-plate capacitor consists of two parallel conducting plates separated by a distance
that is small compared to their dimensions.

The field between the plates of a parallel-plate conductor is considered uniform, and the
charges on the plates are uniformly distributed. When the region between the plates is empty,
capacitance can be calculated from the field:
• 𝑉𝑎𝑏 = 𝐸𝑑
• 𝐸 = 𝜂

𝜀0
= 𝑄

𝜀0𝐴
• 𝑉𝑎𝑏 = 𝑄𝑑

𝜀0

• 𝐶 = 𝜀0𝐴
𝑑

• The capacitance depends only on the geometry of the capacitor.

Cylinder Capacitor
A cylindrical capacitor consists of a cylinder (or wire) of radius 𝑅𝑏 surrounded by a coaxial
cylindrical shell of inner radius 𝑅𝑎. Both cylinders have length 𝓁, which we assume is much
greater than the separation of the cylinders, so we can neglect the end effects. The capacitor
is charged (by connecting it to a battery) so that one cylinder has a charge +𝑄 (say, the inner
one) and the other one a charge – 𝑄. Determine a formula for the capacitance.

𝐶 = 𝑄
𝑉

𝑉𝑏𝑎 = 𝑉𝑏 − 𝑉𝑎 = − ∫
𝑏

𝑎

⃗𝐸 ⋅ d ⃗𝑠

𝐸 = 𝜆
2𝜋𝜀0𝑟

= 𝑄
2𝜋𝜀0𝑟𝓁

𝑉𝑎𝑏 = 𝑉𝑎 − 𝑉𝑏 = − 𝑄
2𝜋𝜀0𝓁

ln(𝑅𝑎
𝑅𝑏

)

𝐶 = 𝑄
𝑉

= 2𝜋𝜀0𝓁

ln(𝑅𝑎
𝑅𝑏

)

One common way to charge a capacitor is to connect the two conductors to opposite terminals
of a battery. (batteries create a Δ𝑉 ).

If we change the magnitude of the charge on each conductor, the potential difference changes,
but not the ratio of charge to potential difference. That ratio, 𝑄

Δ𝑉  is the capacitance.

Two parallel lines indicate a capacitor: ⊣⊢

Capacitors in parallel have the same potential, 𝑉 .

Then, the charge on each depends on the capacitance:

𝑉1 = 𝑄1
𝐶1

𝑉2 = 𝑄2
𝐶2

⟹ 𝑄1
𝐶1

= 𝑄2
𝐶2

This can be simplified into a single capacitor:
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𝐶≡ = 𝑄≡
𝑉𝑎𝑏

= 𝐶1 + 𝐶2

𝑄≡ = 𝑄1 + 𝑄2

For capacitors in series, their potential differences add: 𝑉𝑎𝑐 + 𝑉𝑐𝑏 = 𝑉𝑎𝑏, and they have the same
charge 𝑄.

𝑉1 = 𝑄1
𝐶1

𝑉2 = 𝑄2
𝐶2

𝑉𝑎𝑏 = 𝑉1 + 𝑉2 = 𝑄1
𝐶1

+ 𝑄2
𝐶2

= 𝑄
𝐶1

+ 𝑄
𝐶2

= 𝑄( 1
𝐶1

+ 1
𝐶2

)

This can be simplified into a single capacitor:

𝑄≡ = 𝑄

𝐶≡ = 1
1

𝐶1
+ 1

𝐶2

Energy stored in a capacitor
The work needed to add a small amount of charge when the potential difference between
capacitor plates is 𝑉  is d𝑊 = 𝑉 d𝑞.

Then, we know 𝑉 = 𝑞
𝐶 . Therefore:

𝑊 = ∫ d𝑊 = ∫
𝑄

0
𝑉 d𝑞 = 1

𝐶
∫

𝑄

0
𝑞 d𝑞 = 𝑄2

2𝐶

This then means that:

𝑈 = 𝑄2

2𝐶
= 𝐶𝑉 2

2
= 𝑄𝑉

2

For a parallel plate capacitor, we can plug some things in:

𝑉 = 𝐸𝑑, 𝐶 = 𝜀0𝐴
𝑑

⟹ 𝑈 = 1
2
𝜀0𝐸2𝐴𝑑

Then, we can calculate, 𝑢, the energy per unit volume:

𝑢 = 𝑈
𝑑 × 𝐴

= 1
2
𝜀0𝐸2

This is also the energy density for any electric field (not just for parallel plate capacitors).

Dielectrics
• Most capacitors have a nonconducting material (called a dielectric) between the conducting

plates
• A common capacitor design uses long strips of metal foil for the plates, which are separated

by strips of plastic sheet.
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When an insulating material is inserted between the plates of a capacitor whose original
capacitance is 𝐶0, the new capacitance is greater by a factor 𝐾 , where 𝐾 is the dielectric
constant of the material:

𝐶 = 𝐶0𝐾 = 𝐾𝜀0
𝐴
𝑑

= 𝜀𝐴
𝑑

People use dielectrics because they increase energy densities and allow for the storage of
higher voltages.

• When a dielectric is inserted between the plates of a capacitor, the electric field decreases
‣ 𝐸 = 𝐸0/𝐾

• This is due to the polarization of the charge within the dielectric, which results in induced
surface charges.

Unfortunately, we live in the real world and things break down. In the case of dielectrics, they
can become a conductor. The dielectric strength is the maximum electric field the material can
withstand. This measurement is in units of 𝑉

𝑚 . For example, for pyrex, its 𝐸𝑚 = 1 × 107  V / m .

If you charge a capacitor, disconnect it, and then insert a dielectric, this will decrease the
potential since the capacitance increases and the charge remains constant.

If it had remained connected, this would have increased the charge since the voltage is constant
and the capacitance increased.

Problem
A capacitor with capacitance 𝐶1 is charged by a battery with voltage 𝑉0. It is disconnected from
the battery and then connected to an uncharged capacitor with capacitance 𝐶2.

1. Determine the total stored energy before the two capacitors are connected.

𝑈𝑖 = 1
2
𝐶1𝑉 2

0

𝐶≡ = 𝐶1 + 𝐶2

𝑄≡ = 𝑄1𝑖 = 𝐶1𝑉0

The initial charge 𝑄𝑖1 is the total final charge for 𝐶1 and 𝐶2.

Final voltages:

𝑉1𝑓 =
𝑄1𝑓

𝐶1
= 𝑉2𝑓 =

𝑄2𝑓

𝐶2
= 𝑉≡ = 𝑄≡

𝐶≡
= 𝐶1𝑉0

𝐶1 + 𝐶2

2. Determine the total stored energy after they are connected.

𝑈𝑓 = 1
2
𝐶1(

𝐶1𝑉0
𝐶1 + 𝐶2

)
2

+ 1
2
𝐶2(

𝐶1𝑉0
𝐶1 + 𝐶2

)
2

= 𝐶2
1𝑉 2

0
2(𝐶1 + 𝐶2)

3. What is the change in energy?

Δ𝑈 = 𝑈𝑓 − 𝑈𝑖 = − 𝐶1𝐶2𝑉 2
0

2(𝐶1 + 𝐶2)

4. What is the charge on each of the capacitors after they are connected?
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Review
Capacitors in parallel:

𝑉≡ = 𝑉1 = 𝑉2 = 𝑉3 = ⋯
𝑄≡ = 𝑄1 + 𝑄2 + 𝑄3 + ⋯
𝐶≡ = 𝐶1 + 𝐶2 + 𝐶3 + ⋯

Capacitors in series:

𝑉≡ = 𝑉1 + 𝑉2 + 𝑉3 + ⋯
𝑄≡ = 𝑄1 = 𝑄2 = 𝑄3 = ⋯
1

𝐶≡
= 1

𝐶1
+ 1

𝐶2
+ 1

𝐶3
+ ⋯

This differs from the last class because it shows the generalization.

For dielectrics:

𝐶 = 𝐶0𝐾 = 𝐾𝜀0
𝐴
𝑑

= 𝜀𝐴
𝑑

Energy Density:

𝑢 = 𝑈
𝑑 × 𝐴

= 1
2
𝜀0𝐸2

Conduction
• Connecting a wire to a battery causes a nonuniform surface charge distribution
• Surface charges induce an electric field inside the wire
• The electric field pushes the sea of electrons through the metal.
• Electrons are what actually move and carry the charge, but traditionally you treat current as

the motion of positive charges.

Kirchhoff’s Junction law
The current is the same everywhere in a circuit without junctions, and the sum of currents
entering a junction equals the sum leaving.

Resistance
Collisions of electrons with atoms cause a conductor to resist the motion of charges.

Resistivity is an electrical property of a material like copper.

Resistance is a property of a specific wire or circuit based on what is made of and its size
and shape.

Ohm’s Law
The current flowing through a wire or circuit element depends on the potential difference and
the resistance.

𝐼 = Δ𝑉
𝑅

Electromotive Force
Electromotive Force (not a force) is similar to a pump for water.

30



This is denoted as EMF and is the influence that makes current flow from lower to higher
potential. A circuit device that provides emf is called a source of emf.

The symbol ℰ is for emf.

𝜈

Batteries
Batteries are a source of emf and transform chemical energy into electrical energy. Electricity
can be created if dissimilar metals are connected by a conductive solution called an electrolyte,
creating a simple electric cell.

As the cathode (-) gets dissolved by the electrolyte, each atom leaves 2 (in this case) electrons
on the electrode and positive zinc ions enter the electrolyte.

The electrolyte then becomes positively charged and can pull electrons off the anode. As
electrons are pulled off the anode, it becomes positively charged.

Then, the equal and opposite charges on the cathode and anode create a potential difference
between the terminal ends.

Current
A current is any motion of charge from one region to another.

𝐼 = d𝑄
d𝑡

The units of current is the amp, 𝐴 = 𝐶/𝑠.

Conventional current is treated as a flow of positive charges.

In a metallic conductor, the moving charges are electrons, but the current still points in the
direction in which positive charges would flow.

Current density:

⃗𝐽 = 𝑛𝑞 ⃗𝑣𝑑

𝑛 is the concentration of moving charged particles. 𝑞 is the charge per particle. ⃗𝑣𝑑 is the drift
velocity.

[ ⃗𝐽] = 𝐶/(𝑚2 ⋅ 𝑠)

The resistivity of a material is:

𝜌 = 𝐸
𝐽

The conductivity is the reciprocal of the resistivity:

𝜎 = 1
𝜌

Material 𝜌 (Ω ⋅ 𝑚)
Copper 1.72 × 10−8

Gold 2.44 × 10−8

Glass 1010– 1014
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The resistivity varies with temperature and usually increases with higher temperatures.

However, for semiconductors, it decreases with higher temperatures.

For superconductors, if the temperature gets low enough, the resistivity becomes zero.

The resistance of a conductor is:

𝑅 = 𝜌𝐿
𝐴

𝐴 is the cross-sectional area.

Then, Ohm’s law can give you the potential with Δ𝑉 = 𝐼𝑅.

In many conductors, the resistance is independent of the voltage and related by Ohm’s law,
𝑉 = 𝐼𝑅.

Resistance is in ohms, 1Ω = 1𝑉 /𝐴

If a material does not follow Ohm’s law, it is called nonohmic.

Note the Δ. This means that after a resistor, the potential decreases.

Summary
• Batteries maintain a constant potential difference (the current may vary)
• Resistance is a property of a specific device
• Current is not a vector, but has direction
• Current and charge do not get used.

Example
A particular wire has a length 𝐿 = 1.5 meters and a circular cross-sectional area of 𝑟 = 2.0 mm.
The resistance of this wire is 25Ω. What is the resistivity?

𝑅 = 𝜌𝐿
𝐴

→ 𝜌 = 𝑅𝐴
𝐿

=
𝑅(𝜋𝑟2)

𝐿
= 0.00020944 𝑚Ω ⇒ 𝜎 = 4774.65 1/(𝑚Ω)

𝐽 = 𝜎𝐸 = 𝐸
𝜌

= 𝐸𝐿
𝜋𝑅𝑟2

Calculate the current in the wire if the field strength is 7.0 V/m.

𝐽 = 𝐼
𝐴 ⇒ 𝐼 = 𝐽𝐴 ⇒ 𝐸𝐿

𝑅𝐴𝐴 = 𝐸𝐿
𝑅 = 420 mA

If you have a device that has a potential difference across it, 𝑉𝑎𝑏 = 𝑉𝑎 − 𝑉𝑏, and then 𝑃 = 𝑉𝑎𝑏𝐼 .
This is where current passes from a towards b.

In general, 𝑃 = 𝐼𝑉 , and for an ohmic resistor, this becomes 𝑃 = 𝐼2𝑅.

Example
Consider two incandescent bulbs. Bulb 1 has a resistance that is twice as large as bulb 2, but
they are otherwise similar. The voltage drop is the same for both. Which is brighter?

Assume brightness ∝ power.

𝑅1 = 2𝑅, 𝑅2 = 𝑅.

𝑃1 = 𝐼1𝑉 = 𝑉 2

2𝑅 , 𝑃2 = 𝐼2𝑉 = 𝑉 2

𝑅

Since 𝑃2 > 𝑃1, bulb 2 is brighter.
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Alternatively, assume the current flowing through them is the same.

𝑅1 = 2𝑅, 𝑅2 = 𝑅
𝑃 = 𝐼2𝑅 by 𝑉 = 𝐼𝑅

Therefore, bulb 1 will be brighter if the current remains the same.

Example
A power station delivers 750 kW of power at 12,000 V to a factory through wires with a total
resistance of 3.0 Ω. How much less power is wasted if the electricity is delivered at 50,000 V
instead of 12,000 V?

𝑃diss = 𝐼2𝑅 = (𝑃
𝑉

)
2

𝑅

Δ𝑃diss = ( 𝑃
𝑉1

)
2

𝑅 − ( 𝑃
𝑉2

)
2

𝑅 = 𝑅𝑃 2( 1
𝑉 2

1
− 1

𝑉 2
2

) = 11.0438 kW

Circuit Diagrams
A logical picture of what is connected to what. The precise mechanism of the connection is not
specified.

• the longer end of the battery symbol indicates the positive terminal and the emf of the battery
might be written next to it

• wire should be assumed to have no resistance

Circuit elements:

Resistor
Potential decreases across a resistor if you travel in the direction of the current. In other words,
if point 𝐴 is further down the line to point 𝐵, 𝑉𝐴 > 𝑉𝐵.

Furthermore, 𝑉𝐴 − 𝑉𝐵 = 𝐼𝑅.

In Series
In series, resistors add their resistances.

By Kirchhoff’s junction law, the current is the same across all resistors: 𝐼 = 𝐼1 = 𝐼2 = 𝐼3 = ⋯.

We furthermore know that the voltages add: 𝑉≡ = 𝑉1 + 𝑉2 + 𝑉3 + ⋯
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𝑅≡ = 𝑅1 + 𝑅2 + 𝑅3 + ⋯

In parallel
If the resistors are in parallel, the potential difference is constant: 𝑉≡ = 𝑉1 = 𝑉2 = 𝑉3 = ⋯.
Furthermore, the currents add: 𝐼≡ = 𝐼1 + 𝐼2 + 𝐼3 + ⋯.

Together this becomes:

1
𝑅≡

= 1
𝑅1

+ 1
𝑅2

+ 1
𝑅3

+ ⋯

Something to think about is that the electrons will “choose” the path of least resistance,
and resistors resist because electrons bump into stuff, so parallel resistors will have a lower
resistance than any of the individual resistors.

Example
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Example

What happens to the voltage across each resistor when the switch is closed?

We know that adding a resistor will decrease the resistance, so 𝑅234 < 𝑅34. This will also
therefore decrease the overall resistance, which increases the overall current.

Let 𝐼  be the overall current.

𝑉1 = 𝑅1𝐼
𝑉2?34 = 𝑉 − 𝑉1 = 𝑉 − 𝑅1𝐼

𝑉  is constant, but since 𝐼  increased, 𝑉1 increased, therefore making 𝑉2?34 decrease, which
furthermore implies 𝑉3 and 𝑉4 decreased. Since 𝑉2 was previously zero, it must have increased.

What happens to the current through each resistor when the switch is closed?

By above, we know that the voltage through 𝑉1 and 𝑉2 increased, and the voltage through 𝑉3
and 𝑉3 decreased. Since 𝑉 = 𝐼𝑅 → 𝑅 = 𝑉

𝐼 , 𝐼1, 𝐼2 decreased and 𝐼3, 𝐼4 increased.

What happens to the power output of the battery when the switch is closed?

Since 𝑃 = 𝐼𝑉 , and the voltage stays constant but the current drops, the power also drops after
the switch is closed.

Let 𝑅1 = 𝑅2 = 𝑅3 = 𝑅3 = 135Ω and 𝑉 = 22.0 V . Determine the current through each resistor
before and after closing the resistor.

Open:
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𝑅≡ = 𝑅1 + ( 1
𝑅3

+ 1
𝑅3

)
−1

𝐼23 = 𝐼1 = 𝐼 = 𝑉
𝑅≡

𝑉1 = 𝐼𝑅1

𝑅23 = ( 1
𝑅3

+ 1
𝑅3

)
−1

𝑉23 = 𝐼𝑅23

𝑉23 = 𝑉2 = 𝐼2𝑅2 → 𝐼3 = 𝑉23
𝑅2

Alternative:

𝐼4 = 𝐼 − 𝐼3 = 𝐼 − 𝐼4 ⇒ 𝐼4 = 𝐼
2

= 𝐼3

Closed:

𝑅≡ = 𝑅1 + ( 1
𝑅2

+ 1
𝑅3

+ 1
𝑅3

)
−1

𝐼234 = 𝐼1 = 𝐼 = 𝑉
𝑅≡

𝐼2 = 𝐼3 = 𝐼4 = 𝐼234
3

Batteries
In reality, batteries have some resistance through them.

This then results in 𝑉𝑎𝑏 = ℰ − 𝐼𝑟.

ℰ is the battery’s emf, 𝑟 is the internal resistance, and 𝐼  is the current through the battery.

Kirchhoff’s rules
• For any junction, ∑ 𝐼 = 0.
• For any closed loop, ∑ 𝑉 = 0.
‣ Conventionally, +ℰ of potential difference is created going from the negative to the positive

terminal.
‣ It doesn’t actually matter! But stay consistent.

Resistors in series
If you have resistors in series:
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The resistances are added, the voltage difference are added, and the current remains constant.

𝑅≡ = 𝑅1 + 𝑅2 + 𝑅3 + ⋯

For resistors in parallel:

The currents add the voltage difference is constant, and the resistance is averaged by the
harmonic mean.

1
𝑅≡

= 1
𝑅1

+ 1
𝑅2

+ 1
𝑅3

+ ⋯
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Current Calculations
Use Kirchhoff’s junction rule. The sum of all currents at any junction is zero.

∑ 𝐼 = 0

Voltage Calculations
A loop is any closed conducting path. Kirchhoff’s loop rule, which is valid for any closed loop, is:

∑ 𝑉 = 0

where each 𝑉  is a potential difference across some segment. The loop rule is a statement that
the electrostatic force is conservative.
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Example
In the circuit shown in the figure, the batteries have negligible internal resistance, and the
meters are both idealized. With the switch open, the voltmeter reads 15.0 V .

1. Find the emf of the battery.
2. What will the ammeter read when the switch is closed?

Example
We idealize the battery to have a constant emf and zero internal resistance, and we ignore the
resistance of connecting conductors.
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ℰ − 𝑖𝑅 − 𝑞
𝐶

= 0

ℰ − d𝑞
d𝑡

𝑅 − 𝑞
𝐶

= 0

⇒ 𝑞(𝑡) = 𝐶ℰ(1 − 𝑒−𝑡/𝑅𝐶)

Example
Discharging a circuit.

𝑖 = −d𝑞
d𝑡

Here, we have 𝑞(0) = 𝑄0.

𝑖𝑟 − 𝑞
𝐶

= 0

−d𝑞
d𝑡

𝑟 − 𝑞
𝐶

= 0

⇒ 𝑞(𝑡) = 𝑄0𝑒−𝑡/(𝐶𝑅)

Battery
A battery with voltage 𝑉0 is connected at time 𝑡 = 0 to two resistors with resistances 𝑅0 and
2𝑅0 in series with 2 capacitors with capacitances 𝐶0 and 3𝐶0. Find an equation for the current
in the circuit as a function of time in terms of the parameters given.
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Review Day

Exam Format
Practice Exam exists on Canvas. You probably should do it!
• 4 conceptual problems
• 2 shorter problems
• 2 longer problems

You are allowed one 8.5″x11″ formula sheet. There will not be one provided. If your sheet is
double-sided, you will not be allowed to use it.

Most problems will have answers in the form of variables, but at least one question will have
numbers, requiring a calculator.

Showing your work is good for partial credit and may be required.

Subparts are there to measure your knowledge of getting to the answer.

Many problems will be very similar. At least one will be “very similar to one done in a lecture or
on the homework. Probably more than one.”

There will probably be a problem involving an integral to find either 𝐸 or 𝑉 .

On the slides, there’s a diagram of the calculus knowledge you need.

Constants are given on the exam.

Concepts

Coulomb’s Law

𝐹 = 𝑘|𝑞1𝑞2|
𝑟2

𝑘 = 8.99 × 109 N m2/C 2

The direction of the force is dependent on the charges. Like charges repel, opposites attract.

Electric Field
From a single point charge:

⃗𝐸 = 𝑘𝑄
𝑟2 �̂�

�̂� is radially out from the source charge. This means that for positive charges, the electric field
is radially outward, and for negative charges, it is radially inward.
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Furthermore, by Coulomb’s law, ⃗𝐹 = ⃗𝐸𝑞.

For multiple charges, you can sum the electric fields coming from those charges.

For a continuous distribution of charge, act as if it is infinitely many point-like charges:

⃗𝐸 = ∫ 𝑘
𝑟2 �̂� d𝑞

Usually, this can be made easier through symmetries to find the direction or eliminate annoying
parts of the problem.

Types of Problems
Calculate forces and electric fields for multiple point charges.

Calculate the motion of a charged particle in a uniform electric field.

Calculate the electric field at a point from a continuous charge distribution.

Gauss’s Law
Flux is

Φ𝐸 = ∫ ⃗𝐸 ⋅ d ⃗𝐴

This can usually be made simplier through special cases:
• 𝐸 constant and ⟂ to surface: Φ𝐸 = 𝐸𝐴
• 𝐸 constant and ∥ to surface: Φ𝐸 = 0

For a closed surface:

Φ𝐸 = ∮ ⃗𝐸 ⋅ d ⃗𝐴 = 𝑄enclosed
𝜀0

Strategies
1. Determine the symmetry of the electric field.
2. Draw a gaussian surface with the same symmetry as the electric field such that it is either

perpendicular or parallel to the electric field at every point.
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Inside a conductor, ⃗𝐸 = ⃗0, which implies that the voltage throughout a conductor is constant.

Types of problems
• The electric field for spheres, cylinders, and sheets of charge.
• the electric field for charge distributed uniformly through a volume with an above symmetry

(e.g. slab of charge)
• Calculate how charge gets distributed on the inner and outer surfaces of conductors ( ⃗𝐸 = ⃗0

and all of the charges are on the outside of the conductor.)
‣ 𝑄inner + 𝑄outer = 𝑄total
‣ Since for closed surfaces, 𝑄enclosed/𝜀0 = ∮ ⃗𝐸 ⋅ d ⃗𝐴, and ⃗𝐸 = ⃗0 in a conductor, so 𝑄enclosed = 0.

Electric Potential

𝑉ba = 𝑈𝑏 − 𝑈𝑎
𝑞

= −𝑊ab

𝑊ab is the work done by ⃗𝐸 to move a charge from 𝑎 to 𝑏.

𝑉ba = 𝑉𝑏 − 𝑉𝑎 = − ∫
𝑏

𝑎

⃗𝐸 ⋅ d ⃗𝓁

Point charges, setting 𝑉 = 0 to 𝑟 = ∞:

𝑉 = 𝑘𝑄
𝑟

, 𝑈 = 𝑘𝑄𝑞
𝑟

Charge distrubtion:

𝑉 = ∫ d𝑉 = ∫ 𝑘
𝑟

d𝑞

⃗𝐸 = −∇𝑉 (𝑥, 𝑦, 𝑧)

Note that there are two types of integrals for finding 𝑉 . You should use the first one if you know
the electric field already. If you have a continuous charge distribution, use the ∫ 𝑘

𝑟 d𝑞 one. Note
that the first one does not assume 𝑉 = 0 at 𝑟 = ∞, but the second one does.

Types of Problems
• Calculate the motion of charged particles via conservation of energy.
• Calculate 𝑉  from 𝐸.
• Calculate 𝑉  from a continuous distrubtion of charge.
• Calculate 𝐸 from 𝑉  via partial derivatives.

Capacitor
Capacitance:

𝐶 = 𝑄
𝑉

, 𝑄 = 𝐶𝑉 , 𝑉 = 𝑄
𝐶

For a parallel plate capacitor:

𝐶 = 𝜀0𝐴
𝑑

To do so for any surface, we
1. Find 𝐸 (probably using Gauss’s law)
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2. Find 𝑉  via integration of 𝐸
3. Use 𝐶 = 𝑄/𝑉

Capacitors in parallel:

𝑉≡ = 𝑉1 = 𝑉2 = 𝑉3 = ⋯
𝑄≡ = 𝑄1 + 𝑄2 + 𝑄3 + ⋯

𝐶≡ = 𝐶1 + 𝐶2 + 𝐶3 + ⋯

Capacitors in series:

𝑄≡ = 𝑄1 = 𝑄2 = 𝑄3 = ⋯
𝑉≡ = 𝑉1 + 𝑉2 + 𝑉3 + ⋯

1
𝐶≡

= 1
𝐶1

+ 1
𝐶2

+ 1
𝐶3

+ ⋯

Energy stored in a capacitor:

𝑈 = 𝑄𝑉
2

= 𝐶𝑉 2

2
= 𝑄2

2𝐶

Energy density stored in the electric field:

𝑢 = 𝜀0𝐸2

2

𝐾 is the dielectric constant:

𝐶 = 𝐾𝐶0

Types of Problems
• Deriving the capacitance for a certain kind of capacitor: spherical, cylindrical, parallel plate
• Problems with capacitor circuits
• Problems involving dielectrics
• Problems involving electric energy storage

Current, Resistance, and Circuits
Current:

𝐼 = d𝑄
d𝑡

Ohm’s Law:

𝑉 = 𝐼𝑅

Power transformed is:

𝑃 = 𝐼𝑉

For a resistor, this is

𝑃 = 𝐼2𝑅 = 𝑉 2

𝑅

For resistors in series:
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𝑉≡ = 𝑉1 + 𝑉2 + 𝑉3 + ⋯
𝐼≡ = 𝐼1 = 𝐼2 = 𝐼3 = ⋯

𝑅≡ = 𝑅1 + 𝑅2 + 𝑅3 + ⋯

For resistors in parallel:

𝑉≡ = 𝑉1 = 𝑉2 = 𝑉3 = ⋯
𝐼≡ = 𝐼1 + 𝐼2 + 𝐼3 + ⋯

1
𝑅≡

= 1
𝑅1

+ 1
𝑅2

+ 1
𝑅3

+ ⋯

At a junction:

∑ 𝐼 = 0

Around a loop:

∑ Δ𝑉 = 0

For adding these changes in a loop:

Element Direction Moving Δ𝑉
Resistor Same as 𝐼 −𝐼𝑅
Battery From − to + +ℰ
Capacitor From − to + +𝑄/𝐶

For charging an RC circuit:

ℰ − 𝑅d𝑄
d𝑡

− 𝑄
𝐶

= 0

⇒ 𝑄(𝑡) = 𝐶ℰ(1 − 𝑒−𝑡/(𝑅𝐶))

For discharging an RC circuit:

−𝑅d𝑄
d𝑡

− 𝑄
𝐶

= 0

⇒ 𝑄(𝑡) = 𝑄0𝑒−𝑡/(𝑅𝐶)

Types of Problems
• Circuit problems, esp. involving Kirchoff’s rules.
• Write and solve loop and junction equations
• Calculate unknown currents and voltages
• Calculate power delivered or dissipated by circuit elements. EMF sources deliver power to

circuits, and resistors dissipate power.
• RC circuit problems. Be able to follow the derivation of charging and discharging.
‣ not part of a long question
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Magnets

Magnets
Magnets have two poles, north and south. Like poles repel, opposite poles attract.

Furthermore, if you cut a (permanent) magnet in half, it will form smaller submagnets, not an
all-north/all-south pair.

Magnetic fields can be visualized using magnetic field lines, which are always closed loops.

The earth is a magnet. The north end of the earth is the south end of a giant weak magnet.

A uniform magnetic field is constant in magnitude and direction. This can be approximately the
case often.

Electromagnetism
Electric current can form magnet fields.

Use your right hand, and point your thumb in the direction of the current. The direction your
fingers curl is the direction of the magnetic field.

Alternatively, if you have a loop of current, if you curl your fingers in the direction of the current,
the magnetic field goes in the direction of your thumb.

Cross product
⃗𝑎 × ⃗𝑏 = ‖𝑎‖‖𝑏‖ sin(𝜃)�⃗�

Alternatively,

⃗𝑎 × ⃗𝑏 = det

(
(((
( �̂�

𝑎1
𝑏1

𝑗
𝑎2
𝑏2

�̂�
𝑎3
𝑏3)

)))
)

Order matters!

Magnetic Force
⃗𝐹 = 𝑞 ⃗𝑣 × �⃗� = 𝑞𝑣 sin(𝜑)

⃗𝐹  is the force on a charge 𝑞. ⃗𝑣 is the velocity of a charge. �⃗� is the magnetic field. 𝜑 is the angle
between ⃗𝑣 and �⃗�.

Note that 𝑞 is signed.

To remember
• The magnetic force is perpendicular to the direction of the magnetic field.
• The magnetic force is perpendicular to the direction of the velocity.
• Velocity is required
• Right-hand rule is useful

Circle
If a charged particle is moving perpendicular to a uniform magnetic field, its path will be a
circle.

‖𝐹‖ = 𝑞𝑣𝐵
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𝑎𝑐 = 𝑣2

𝑟
⇒ ‖𝐹‖

𝑚
= 𝑣2

𝑟

Then

𝑞𝑣𝐵
𝑚

= 𝑣2

𝑟

⇒ 𝑟 = 𝑚𝑣
𝑞𝐵

Example
An electron travels at 𝑣 = 1.5 × 107 m /s  in a plane perpendicular to a uniform 0.010 T 
magnetic field. Describe its path.

𝑟 = 𝑚𝑣
𝑞𝐵

= 8.52845 mm

𝑇 = 2𝜋𝑟
𝑣

⇒ 𝑇 = 3.57239 ns

Review
3 → 4 conceptional problems.

No more RC circuits.

Solutions have been posted for the practice exam.

It’s curved to B- usually. It will never be curved down.

Problems

Problem ⃗𝐸 gaussian
A long insulating cylinder of radius 𝑎 with linear charge density +𝜆 has a charge uniformly
distributed through its volume. It is surrounded by a conducting cylindrical shell of inner radius
𝑏 and outer radius 𝑐 with linear charge density +2𝜆.

Charge per volume on the inner cylinder:

𝜌 = charge
volume

= 𝜆𝐿
𝐿𝜋𝑎2 = 𝜆

𝜋𝑎2

To find 𝐸, consider a cylindrical Gaussian surface with radius 𝑟 and length 𝐿.

Φ𝑒 = ∮ ⃗𝐸 ⋅ d ⃗𝐴 = 𝑄
𝜀0

𝐸 ⋅ 2𝜋𝑟𝐿 = 𝑄
𝜀0

𝐸 = 𝑄
2𝜀0𝜋𝑟𝐿

Let 𝑟 < 𝑎.

This means that the Gaussian surface is inside the inner insulating cylinder.

Therefore 𝑄 = 𝜆𝐿𝜋𝑟2

𝜋𝑎2 = 𝜆𝑟2

𝑎2 𝐿

𝐸 = 𝑄
2𝜀0𝜋𝑟𝐿

= 𝜆𝑟
2𝑎2𝜀0𝜋
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Let 𝑎 < 𝑟 < 𝑏.

Then, 𝑄 = 𝜆𝐿

𝐸 = 𝑄
2𝜀0𝜋𝑟𝐿

= 𝜆
2𝜀0𝜋𝑟

For 𝑏 < 𝑟 < 𝑐:

⃗𝐸 = 0

Inside conductor

For 𝑐 < 𝑟:

𝑄 = (𝜆 + 2𝜆)𝐿

𝐸 = 3𝜆
2𝜀0𝜋𝑟

Linear charge density on inner and outer surfaces:

𝑟 = 𝑏 → −𝜆 𝑟 = 𝑐 → 3𝜆

Problem ⃗𝐸

⃗𝐸 = ∫ 𝑘
𝑟2 �̂� d𝑞

d𝑞 = 𝑄
𝐿 d𝑥

= ∫
𝐿

0

𝑘
𝑟2 �̂�𝑄

𝐿
d𝑥

= 𝑘𝑄
𝐿

∫
𝐿

0

1
𝑟2 �̂� d𝑥

= 𝑘𝑄
𝐿

∫
𝐿

0

1
√

𝑥2 + 𝑎22
𝑥�̂� + 𝑎𝑗√
𝑥2 + 𝑎2⏟⏟⏟⏟⏟

𝑟

d𝑥

= 𝑘𝑄
𝐿

(∫
𝐿

0

𝑥�̂�
√

𝑥2 + 𝑎23 + ∫
𝐿

0

𝑎𝑗
√

𝑥2 + 𝑎23 d𝑥)

Helical Motion
Recall from last time we calculated what happens if a particle moves in a circle and what would
cause this (velocity perpendicular to the field).

Consider what would happen if you add another velocity parallel to the field. The velocity parallel
does not change 𝑞 ⃗𝑣 × �⃗� because it is parallel, but the velocity perpendicular still has an effect,
and so the acceleration due to the magnetic field is 0 in the direction of the magnetic field and
creates a circle in the perpendicular direction. In sum, this makes the particle go in a helix.

Therefore, a helix is the general form of the movement of a particle in a magnetic field of
constant direction and magnitude.

• If the particle has velocity components parallel to and perpendicular to the field, its path is
a helix.
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• The speed and kinetic energy of the particle remains constant.
• The perpendicular component of the velocity, 𝑣⟂, determines the circular part of the motion
• The parallel component, 𝑣∥, determines the translational part of the motion

Force on a conductor
The force on a segment of straight wire is

⃗𝐹 = 𝐼 ⃗𝓁 × �⃗�

Where 𝐼  is the current, ⃗𝓁 is the vector length of the wire, �⃗� is the magnetic field and ⃗𝐹  is
the force.

Torque on a conductor
By using the above statement, we can also find the torque on a wire.

⃗𝜏 = ⃗𝜇 × �⃗�

𝜇 is the magnetic dipole moment and is calculated ⃗𝜇 = 𝑁𝐼 ⃗𝐴, where ⃗𝐴 is the area and is in the
direction perpendicular to the face, 𝑁  is the number of loops of wire, and 𝐼  is the current in
the wire.

This has practical applications too. Using this torque, you can create an electric motor by turning
off power to an electromagnetic at specific times.

Velocity Selector
By using the fact that magnetic fields and electric fields both act on a particle and that magnetic
field’s strength is dependent on velocity, you can create a velocity selector for charged particles.

For the particle to remain going straight, the forces must sum to zero:

𝐹𝐵 + 𝐹𝐸 = 0
𝑞𝑣𝐵 + 𝑞𝐸 = 0
𝑞(𝑣𝐵 + 𝐸) = 0

𝑣𝐵 + 𝐸 = 0
𝑣𝐵 = −𝐸

𝑣 = −𝐸
𝐵

Therefore I had a sign error somewhere (I think the slides are wrong), which has a velocity
requirement of 𝑣 = 𝐸

𝐵  for the particle to get through, assuming the selector is long enough to
detect any acceleration by having the particle hit the walls.

This can then be used to create a mass spectrometer by first ensuring that particles have a
certain velocity and then measuring how far a magnet displaces them. Since the magnetic force
does not depend on the mass, the acceleration depends on the mass. Now, you can solve for
the mass since you have an exact starting velocity and position.

Hall effect
Since magnets affect all charged particles, this includes particles that are traveling in conduc-
tors and or in some solution.

Take a wire where charged particles are moving from left to right. Putting a magnetic field (into
the page) through this current will induce a voltage difference between the top and bottom of
the wire.
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If this charged particle is negatively charged, the bottom will be at a higher potential.
Conversely, if this charged particle is positively charged, the bottom will be at a lower potential.

This electric field produced by this movement is called the hall field and is denoted 𝐸𝐻 . The
magnitude of the potential difference is called the hall emf.

Review
Magnetic force on a moving charge

⃗𝐹 = 𝑞 ⃗𝑣 × �⃗�

Magnetic force on a current-carrying segment of wire:

d ⃗𝐹 = 𝐼 d ⃗𝓁 × �⃗�

If the field is constant and the wire is straight

⃗𝐹 = 𝐼 ⃗𝓁 × �⃗�

Torque and dipole moment:

⃗𝜇 = 𝑁𝐼 ⃗𝐴, ⃗𝜏 = ⃗𝜇 × �⃗�

Velocity selector

𝑣 = 𝐸
𝐵

Biot-Savart Law
The magnetic field from a small, current-carrying wire segment at a point 𝑝, 𝑟 distance away
from the wire segment.

d�⃗� = 𝜇0𝐼
4𝜋

d ⃗𝓁 × �̂�
𝑟2

d�⃗� is the magnetic field at point 𝑃  induced by the segment

𝐼  is the current in the segment.

d ⃗𝓁 is in the direction of the current, and has length equal to the length of the wire segment.

�̂� is a unit vector from the segment to point 𝑝.

𝑟 is the distance from the wire segment to the point 𝑝

𝜇0 is the magnetic constant in 𝑁2/𝐴

𝑐2 = 1
𝜇0𝜀0

where 𝑐 is the speed of light.

Example
A small line segment carries a current 𝐼  in the vertical direction. What is the magnetic field at
a distance 𝑥 from the segment?

d�⃗� = 𝜇0𝐼
4𝜋

d ⃗𝓁 × �̂�
𝑟2
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d ⃗𝓁 × �̂� is in the −�̂� direction.

Note sin(𝜋 − 𝜃) = sin(𝜃)

𝐵 = 𝜇0𝐼
4𝜋

∫ sin(𝜃)
𝑥2 + 𝓁2 d𝓁

= 𝜇0𝐼
4𝜋

∫ 1
𝑥2 + 𝓁2

𝑥√
𝑥2 + 𝓁2

d𝓁

= 𝜇0𝐼
4𝜋

∫ 𝑥
(𝑥2 + 𝓁2)

3
2

d𝓁

= 𝜇0𝐼
4𝜋

∫
∞

−∞

𝑥
(𝑥2 + 𝓁2)

3
2

d𝓁

= 𝜇0𝐼𝑥
4𝜋

2
𝑥2

= 𝜇0𝐼
2𝜋𝑥

Add on the direction for the vector:

�⃗� = −𝜇0𝐼
2𝜋𝑥

�̂�

Therefore, for a straight wire (of infinite length), the magnetic field strength is inversely propor-
tional to the distance from a wire.

Force between two parallel wires
The magnetic field produced at the position of wire 2 due to the current in wire 1 is:

𝐵1 = 𝜇0𝐼1
2𝜋𝑑

The direction of this is into the page.

𝐹2 = 𝐼2𝓁2𝐵1

𝐹2 = 𝜇0𝐼1𝐼2𝓁2
2𝜋𝑑

Since 𝐹2 is in the direction of ⃗𝑙 × �⃗�, it is towards wire 1.

Force on a loop of current
Remembering ⃗𝑙 × �⃗�, and that �⃗� from an infinite wire goes into the page, we can break this
problem into segments.

𝐹1 = 𝐼2𝑞𝜇0𝐼1
2𝜋𝑏

(−�̂�)

𝐹3 = 𝐼2𝑞𝜇0𝐼1
2𝜋2𝑏

(�̂�)

The force on the top and bottom is:

𝐹2 + 𝐹4

𝐹2’s direction is in the 𝑗 direction, and 𝐹4’s direciton is in the −𝑗 direction. When summing
these forces, the total force is zero.
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Then, sum the 𝐹1 and 𝐹3, resulting in

−𝜇0𝐼1𝐼2𝑎
4𝜋𝑏

�̂�

What is 𝐹2 anyway, though?

�⃗�1(𝑥) = 𝜇𝐼1
2𝜋𝑥

(−�̂�)

𝐹2 = ∫
2𝑏

𝑏

𝜇𝐼2
2𝜋𝑥

(−�̂�) × (�̂�) d𝑥

= ∫
2𝑏

𝑏

𝜇𝐼2
2𝜋𝑥

𝑗 d𝑥

= 𝜇𝐼2
2𝜋

𝑗 ∫
2𝑏

𝑏

1
𝑥

d𝑥

= 𝜇𝐼2
2𝜋

𝑗 ln(2)

Example
Determine �⃗� at point 𝐶 in terms of 𝑅1, 𝑅2, 𝜃 and the current 𝐼 .

d�⃗� = 𝜇0𝐼
4𝜋

d ⃗𝓁 × �̂�
𝑟2

Along the top arc:

�⃗� = 𝜇0𝐼
4𝜋𝑅2

2
(𝑅2𝜃)⏟

𝓁

(−�̂�) = 𝜇0𝐼𝜃
4𝜋𝑅2

(−�̂�)

The bottom arc is very similar for the top arc, but it goes in the opposite direction and uses the
smaller radius 𝑅1:

�⃗� = 𝜇0𝐼𝜃
4𝜋𝑅1

(�̂�)

The two side parts will cancel as 𝐼  is going in opposite directions on them.

Important Equations

Biot-Savart Law

d�⃗� = 𝜇0𝐼
4𝜋

d ⃗𝓁 × �̂�
𝑟2

This is the analogue to the electric field for a point charge.

Magnetic Field due to current in a long, straight wire

𝐵 = 𝜇0𝐼
2𝜋𝑟

Force on wire 2 due to the field from wire 1 for parallel wires:

𝐹2 = 𝜇0𝐼1𝐼2𝓁2
2𝜋𝑑
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Ampere’s Law

∮ �⃗� ⋅ d ⃗𝓁 = 𝜇0𝐼enclosed

This relates the magnetic field around a closed loop to the total current flowing through the loop.

Example
Use Ampere’s Law to find the field around a long, straight wire.

Use a circular path with the wire at the center:

�⃗� is tangent to d ⃗𝓁 along the path.

Furthermore, 𝐵 is constant on the path:

∮ �⃗� ⋅ d ⃗𝓁 = 𝜇0𝐼

�⃗� ⋅ ∮ d ⃗𝓁 = 𝜇0𝐼

𝐵2𝜋𝑟 = 𝜇0𝐼

𝐵 = 𝜇0𝐼
2𝜋𝑟

Which is the same as what we previously got with the Biot-Savart law.

When to use
• It is usually only useful with problems with lots of symmetry, where you can use symmetry to

identify the direction of the magnetic field.
• Choose an integration path that reflects the symmetry (typically, the path is along lines where

the field is constant and perpendicular to the field where it is changing).
• Use the enclosed current to determine the field
• Similar to Gauss’s law problems, but it’s a line integral, not a surface integral.

Example
A coaxial cable consists of a solid inner conductor of radius 𝑅1, surrounded by a concentric
cylindrical tube of inner radius 𝑅2 and outer radius 𝑅3. The conductors carry equal and opposite
currents of 𝐼0 distributed uniformly across their cross sections. Determine the magnetic field
at a distance 𝑟 from the axis for
1. 𝑟 < 𝑅1
2. 𝑅1 < 𝑟 < 𝑅2
3. 𝑅2 < 𝑟 < 𝑅3
4. 𝑟 > 𝑅3

Solution
For 𝑟 < 𝑅1:

𝐵(2𝜋𝑟) = 𝜇0𝐼0
𝜋𝑟2

𝜋𝑅2
1⏟

portion of area

𝐵 = 𝜇0𝐼0𝑟
2𝜋𝑅2

1
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By the right-hand rule, since �⃗� = 𝓁 × �̂�, the direction of �⃗� is counterclockwise.

For 𝑅1 < 𝑟 < 𝑅2:

Reduces to the normal wire case: 𝐵 = 𝜇0𝐼
2𝜋𝑟

For 𝑅2 < 𝑟 < 𝑅3:

𝐵(2𝜋𝑟) = 𝜇0(𝐼0 − 𝐼0
𝜋(𝑟2 − 𝑅2

2)
𝜋(𝑅2

3 − 𝑅2
2)

)

𝐵 = 𝜇0𝐼0
2𝜋𝑟

(1 − 𝑟2 − 𝑅2
2

𝑅2
3 − 𝑅2

2
)

𝐵 = 𝜇0𝐼0
2𝜋𝑟

(𝑅2
3 − 𝑅2

2
𝑅2

3 − 𝑅2
2

− 𝑟2 − 𝑅2
2

𝑅2
3 − 𝑅2

2
)

𝐵 = 𝜇0𝐼0
2𝜋𝑟

(
𝑅2

3 − 𝑅2
2 − (𝑟2 − 𝑅2

2)
𝑅2

3 − 𝑅2
2

)

𝐵 = 𝜇0𝐼0
2𝜋𝑟

( 𝑅2
3 − 𝑟2

𝑅2
3 − 𝑅2

2
)

For 𝑟 > 𝑅3

𝐵(2𝜋𝑟) = 𝜇0(𝐼0 − 𝐼0)
𝐵(2𝜋𝑟) = 𝜇0 ⋅ 0

𝐵 = 0

Solenoid
A solenoid is many loops of wire packed very close together.

54



Take a coil of wire with 4 loops. Above is the density plot of the magnetic field. Notice that the
field “mostly” cancels outside of the center, and inside the solenoid, the field is much stronger.

To compute the field inside the solenoid, draw a rectangle with corners 𝑎, 𝑏, 𝑐, 𝑑, such that 𝑐𝑏
and 𝑑𝑎 are long enough such that 𝑎𝑏 has zero magnetic field. 𝑐𝑏 and 𝑑𝑎 are perpendicular to the
magnetic field, so they have zero contribution to the ampere’s law path integral. Let the length
of 𝑎𝑏 and of 𝑐𝑑 be 𝓁. Then:

𝓁𝐵inside = 𝜇𝐼enclosed = 𝜇𝑁𝐼

𝐵inside = 𝜇0𝑁𝐼
𝓁

= 𝜇0𝑛𝐼

Where 𝐼  is the current in the solenoid wire, 𝑁  is the number of loops enclosed, and 𝑛 is the
number of loops per unit length.

Toriod
Use Ampère’s law to determine the magnetic field inside and outside a toroid, which is like a
solenoid with current 𝐼 , bent into the shape of a circle as shown with 𝑁  loops.
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∮ �⃗� ⋅ d ⃗𝓁 = 𝜇0𝐼enclosed

𝐵(2𝜋𝑟) = 𝜇0𝑁𝐼

𝐵inside = 𝜇0𝑁𝐼
2𝜋𝑟

𝐼enclosed = 0 → 𝐵outside = 0

Magnetic Field of a Moving Charge

�⃗� = 𝜇0
4𝜋

𝑞 ⃗𝑣 × �̂�
𝑟2

�̂� is the unit vector from the point charge toward where the field was measured.

Induction Experiment
A coil of wire was placed down and connected to an ammeter. Moving a magnet up and down
near the coil shows a current in the coil!

This magnet could also be an electromagnet, but it still requires movement in the electromag-
net.

However, you can also just turn on and off the electromagnet, and this also works.

Magnetic Flux

Φ𝐵 = ∫ �⃗� ⋅ d ⃗𝐴

This is analogous to the calculation of electric flux.

If ⃗𝐴 and �⃗� are parallel, Φ𝐵 = 𝐵𝐴.

If ⃗𝐴 and �⃗� are perpendicular, Φ𝐵 = 0

The unit of magnetic flux is the webber: Wb = V ⋅ s = T ⋅ m2
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Faraday’s Law
When the magnetic flux through a single closed loop changes with time, there is an induced
emf that can drive a current around the loop:

ℰ = −dΦ𝐵
d𝑡

For Faraday’s law, put your thumb in the direction of decreasing flux, and then your fingers curl
in the +ℰ direction.

Solenoid
As for magnitude, if you stretch out a circle of wires that was previously a circle into an ellipse,
you reduce the area and therefore reduce the magnetic flux (in magnitude, assuming the
magnetic field is constant). This then creates a current.

Lenz’s Law
The direction of any magnetic induction effect is such to oppose the cause of the effect.

For example, if you move a magnet (north down) toward a loop, since like poles repel, and the
“goal” of the loop is to have the magnet not move, it will create a north field in response.

Equations

Magnetic flux

Φ𝐵 = ∫ �⃗� ⋅ d ⃗𝐴

Faraday’s Law

ℰ = −𝑁 dΦ𝐵
d𝑡

General form

∮ ⃗𝐸 ⋅ d ⃗𝑙 = −𝑁 dΦ𝐵
d𝑡

Example 1
A flat rectangular wire loop with width 𝑎 and height 𝑏 is positioned next to a long straight current-
carrying wire. Both the loop and the wire are in the plane of the page, and the direction of the
current is clearly indicated in the figure.

What is the flux through the loop when it is a distance 𝑟 from the wire?

If the loop has total resistance 𝑅 and is being pulled to the right at speed 𝑣, what is the induced
current in it? What is its direction?
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Example 2
A conducting rod is moved at velocity 𝑣 on top of a U-shaped conductor in a constant magnetic
field going through the U-shaped conductor.

ℰ = dΦ𝐵
d𝑡

Φ𝐵 = ∫ �⃗� ⋅ d ⃗𝐴

dΦ𝐵
d𝑡

= 𝐵d𝐴
d𝑡

= 𝐵 d
d𝑡

[𝓁 × 𝑥] = 𝐵𝓁𝑣

ℰ = 𝐵𝓁𝑣

Example 3
The rod shown below moves to the right on essentially zero-resistance rails at a speed 𝑣 =
3.0 m/s, where the rails are away from each other at a distance of 4 cm. If the magnetic field is
𝐵 = 0.75  T everywhere in the region, what is the current through the resistor (5 Ω)? Does the
current circulate clockwise or counterclockwise?

For direction, there is increasing flux out of the page, which implies the current is clockwise to
counter the increasing flux.

ℰ = −dΦ𝐵
d𝑡

, Φ𝐵 = 𝐵𝐴

dΦ𝐵
d𝑡

= 𝐵d𝐴
d𝑡

= 𝐵ℎ𝑣
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𝐼 = ℰ
𝑅

= 𝐵ℎ𝑣
𝑅

→ 𝐼 = 0.018 A 

EMF induced in a moving conductor
⃗𝐹𝐵 = 𝑞 ⃗𝑣 × �⃗�

This is upward. This will cause a charge separation, which creates an upward electric field, due
to the downward force on the electron.

Equilibrium occurs when ⃗𝐹𝐵 + ⃗𝐹𝐸 = 0.

𝑞𝐸induced = 𝑞𝑣𝐵 → 𝐸induced = 𝑣𝐵

For EMF this means that

ℰ = 𝐸induced𝓁 = 𝑣𝐵𝓁`

Generalized Form of Faraday’s Law
A changing magnetic flux induces an electric field, which is a generalization of Faraday’s law.
This electric field will always exist, regardless of whether or not there are conductors around to
carry current.

∮ ⃗𝐸 ⋅ d𝓁 = −dΦ𝐵
d𝑡

With statics, this was zero. No longer are we static, though: the integral around a closed loop
depends on how the magnetic flux through the loop is changing.

Example
A magnetic field between the pole faces of an electromagnet is nearly uniform at any instant
over a circular area of radius, as shown in the figures. The current in the windings of the
electromagnet is increasing in time at a constant rate 𝛼 at each point. Beyond the circular
region (𝑟 > 𝑟0), we assume 𝐵 = 0 at all times. Determine the electric field at any point 𝑃  a
distance 𝑟 from the center of the circular area due to the changing magnetic field.

For 𝑟 < 𝑟0.

d𝐵
d𝑡

= 𝛼 > 0

𝐵 is constant in space but varying in time.
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We may not have a wire for there to be a current, but if there was one, 𝐼  would be to counter
the changing flux, and therefore 𝐸 is such to be compatible. Therefore, 𝐸 is tangent to the loop
and goes clockwise. By symmetry, 𝐸 is constant around the loop.

∫ ⃗𝐸 ⋅ d ⃗𝓁 = −dΦ𝐵
d𝑡

𝐸(2𝜋𝑟) = −d(𝐵𝐴)
d𝑡

𝐸(2𝜋𝑟) = −𝜋𝑟2 d𝐵
d𝑡

𝐸 = −𝑟
2

d𝐵
d𝑡

𝐸 = −𝑟𝛼
2

For 𝑟 > 𝑟0

𝐸(2𝜋𝑟) = 𝜋𝑟2
0
d𝐵
d𝑡

𝐸 = 𝑟2
0𝛼
2𝑟

Electric Generators
If there is a loop rotating between two magnets, rotating with constant angular velocity 𝜔, the
induced emf is sinusoidal:

ℰ(𝑡) = −𝐵𝐴𝜔 sin(𝜔𝑡)

For 𝑁  loops, ℰ0 = 𝑁𝐵𝐴𝜔 and ℰ(𝑡) = ℰ0 sin(𝜔𝑡).

Mutual Inductance
Consider two neighboring coils of wire.

If the current in coil 1 changes, this will induce emf in coil 2, and if the current in coil 2 changes,
this will induce emf into coil 1.

The proportionality constant for this pair of coils is called the mutual inductance, 𝑀 .

Derivation
Let coil 1 have 𝑁1 turns and let coil 2 have 𝑁2 turns.

Φ21 = ∫ �⃗�𝑖 d ⃗𝐴

We know, therefore, 𝐵1 ∝ 𝐼1, and furthermore

dΦ21
d𝑡

∝

Furthermore, mutual inductance is symmetric: 𝑀 = 𝑀21 = 𝑀12

𝑀 = 𝑁2Φ21
𝐼1

= 𝑁1Φ12
𝐼2

The unit of inductance is the henry: 1 H = 1 Wb/A .
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Application
Electric toothbrushes charge via mutual inductance: the base has alternating current, which
induces emf in a coil in the toothbrush.

Example
A long thin solenoid of length 𝓁 and cross-sectional area 𝐴1 contains 𝑁1 closely packed turns
of wire. A coil of 𝑁2 turns is wrapped around it. Assume all the flux from coil 1, the solenoid
passes through coil 2, and calculate the mutual inductance.

𝑀 = 𝑁2Φ21
𝐼1

= 𝑁1Φ12
𝐼2

Since field 𝐵1 is known, we shall use that:

𝐵1 = 𝜇0𝑛𝐼1 = 𝜇0
𝑁1
𝓁

𝐼1

and therefore

𝑀 = 𝑁2Φ21
𝐼1

= 𝑁2𝐵1𝐴
𝐼1

=
𝑁2𝜇0

𝑁1
𝓁 𝐼1𝐴1

𝐼1
= 𝜇0𝑁1𝑁2𝐴1

𝓁

Other Question
What would create the most inductance between 2 flat circular coils?

Having them face to face! This is because having them face-to-face puts as much flux through
the other coil as possible.

Self-Inductance
Any circuit with a coil that carries a varying current 𝐼  has a self-induced emf.

𝐿 = 𝑁Φ𝐵
𝐼

𝐿 is the self-inductance. 𝑁  is the number of turns. Φ𝐵 is the flux due to the current through
each turn of the coil.

You generally ignore the single loops that just happen to exist in circuits because they are
usually irrelevant.

Example
Determine a formula for the inductance of a solenoid with 𝑁  loops and length 𝓁 whose cross-
sectional area is 𝐴.

Inside the solenoid

𝐵 = 𝜇0𝑛𝐼 = 𝜇0
𝑁
𝓁

𝐼

Therefore

𝐿 = 𝑁Φ𝐵
𝐼

=
𝑁𝜇0

𝑁
𝓁 𝐼𝐴

𝐼
= 𝜇0𝑁2𝐴

𝓁

Inductors as circuit elements
We have a voltage source that gives a variable amount of ℰ.
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Over an inductor, Δ𝑉 = −𝐿d𝐼
d𝑡

If you have no varying current, there is no potential difference.

If you do have a varying current, emf is generated in the reverse direction of the change in
current. The magnitude of this change depends on the inductance of the inductor and the size
of the change in current.

Unlike resistors, inductors do not delete energy, they just store the energy to be released later:

𝑈 = 𝐿 ∫
𝐼

0
𝑖 d𝑖 = 1

2
𝐿𝐼2

The energy density is therefore

𝑢 = 𝑈
𝑉

=
1
2𝐿𝐼2

𝑉
=

(𝜇0𝑁2𝐴𝐼2)/(2𝓁)
𝐴𝓁

= 1
2
𝜇0𝑁2𝐴𝐼2

Furthermore, since

𝐵 = 𝜇0
𝑁
𝓁

𝐼 → 𝐼 = 𝓁𝐵
𝜇0𝑁

𝑢 = 1
2
𝜇0𝑁2𝐴( 𝓁𝐵

𝜇0𝑁
)

2

=

(something went wrong above)

𝜇 = 𝐵2

2𝜇0

But the above is in a vacuum, if it is not in a vacuum, 𝜇 = 𝐾𝑚𝜇0 and

𝜇 = 𝐵2

2𝜇

R-L circuit
An R-L circuit contains a resistor, an inductor and maybe an emf source.
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Suppose at some time 𝑡 = 0 you close a switch, connecting the emf source to the resistor and
inductor. The current does not instantly change, and will take a while to get to the steady state
current 𝐼0 = 𝑉0

𝑅 , governed by the time constant 𝜏 = 𝐿/𝑅.

Solving
By Kirchoff’s loop law:

+ℰ − 𝐼𝑅 − 𝐿d𝐼
d𝑡

= 0

Solve with initial condition 𝐼(0) = 0.

𝐼(𝑡) = ℰ
𝑅

(1 − 𝑒−𝑅𝑡/𝐿)

= 𝐼0(1 − 𝑒−𝑡/𝜏)

Similarly, for current decay, with initial condition 𝐼(0) = 𝐼0:

𝐼(𝑡) = ℰ
𝑟
𝑒−𝑅𝑡/𝐿

= 𝐼0𝑒−𝑡/𝜏

Plot with 𝐼0 = 1 and 𝜏 = 1. The current decay is in orange, and the current growth is in blue.

L-C circuit
It oscillates!

Start with a capacitor charged with a potential difference 𝑉𝑚 and initial charge 𝑄𝑚 = 𝐶𝑉𝑚 on
its left-hand plate.

Connect the capacitor to an inductor.

The capacitor discharges through the inductor. As it discharges, the current continues to flow,
but it will slow down, which means that d𝐼

d𝑡  is negative

When the potential across the capacitor becomes zero, emf is zero and the current levels off at
it’s maximum value 𝐼𝑚.
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… see slides

Derivation

+ 𝑞
𝐶

− 𝐿d𝐼
d𝑡

= 0

But 𝑞 also depends on 𝐼 :

𝐼 = −d𝑞
d𝑡

→ d𝐼
d𝑡

= −d2𝑞
d𝑡2

+ 𝑞
𝐶

− 𝐿d𝐼
d𝑡

= 0

𝑞
𝐶

+ 𝐿d2𝑞
d𝑡2

= 0

Solving:

𝑞(𝑡) = 𝕔1 cos( 𝑡√
𝐿𝐶

+ 𝕔2)

Therefore:

𝐼(𝑡) = 𝕔1
1√
𝐿𝐶

sin( 𝑡√
𝐿𝐶

+ 𝕔2)

Recap: Current in R-L circuit

Plot with 𝐼0 = 1 and 𝜏 = 1. The current decay is in orange, and the current growth is in blue.

Current decay is 𝐼(𝑡) = 𝐼0𝑒−𝑡/𝜏  and current growth is 𝐼(𝑡) = 𝐼0(1 − 𝑒−𝑡/𝜏). 𝜏 = 𝐿/𝑅 and 𝐼0 =
ℰ/𝑅.
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Recap: Current in R-C circuit
𝐼(𝑡) = 𝐼0 sin(𝜔𝑡 + 𝜑)

𝐼0 = 𝜔𝑄0

𝜔 = 1√
𝐿𝐶

𝑞(𝑡) = 𝑄0 cos(𝜔𝑡 + 𝜑)

𝑄0 is the maximum charge on the capacitor. If this is at time 𝑡 = 0, 𝜑 = 0.

Therefore 𝜔 = 1√
𝐿𝐶

.

The period is 𝑇 = 2𝜋
𝜔 . Using the previous formula, where 𝜑 = 0, this can get very nice values at

values 𝑡 ∈ {0, 𝑇/4, 𝑇 /2, 3𝑇/4, 𝑇}.

Energy
𝑞 = 𝑄0 cos(𝜔𝑡)
𝐼 = 𝜔𝑄0 sin(𝜔𝑡)

𝑈𝐸 = 1
2

𝑞2

𝐶
= 1

2
𝑄2

0
𝐶

cos2(𝜔𝑡)

𝑈𝐵 = 1
2
𝐿𝐼2 = 1

2
𝐿𝜔2𝑄2

0 sin2(𝜔𝑡)

𝜔2 = 1
𝐿𝐶

⇒ 𝐿 = 1
𝑐𝜔2

𝑈𝐵 = 1
2

𝑄2
0

𝐶
sin2(𝜔𝑡)

Therefore

𝑈 = 𝑈𝐸 + 𝑈𝐵 = 1
2

𝑄2
0

𝐶
(cos2(𝜔𝑡) + sin2(𝜔𝑡))

= 1
2

𝑄2
0

𝐶

This is constant.

In general, the inductor-capacitor circuit is very similar to the mass-spring system from
mechanics.

RLC circuit
Consider a circuit that starts with a fully charged capacitor.

0 = −𝐿d𝐼
d𝑡

− 𝐼𝑅 + 𝑞
𝐶

𝐼 = −d𝑞
d𝑡

𝐿d2𝑞
d𝑡2

+ 𝑅d𝑞
d𝑡

+ 1
𝐶

𝑞 = 0

These are difficult to solve, but it is possible.
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𝜔′ = √ 1
𝐿𝐶

− 𝑅2

4𝐿2

𝑄 = 𝑄0𝑒
𝑅
2𝐿𝑡 cos(𝜔′𝑡 + 𝜑)

AC current
𝑉 = 𝑉0 sin(𝜔𝑡)
𝐼 = 𝐼0 sin(𝜔𝑡)

To represent these vectors, we define phasors, rotating vectors. By projecting them onto the 𝑥
-axis, you get the current.

The average voltage and current is 0, but that isn’t useful. To get a sense of their typical values,
they are squared, averaged, and then square-rooted, yielding the RMS (root-mean-square) value.

𝐼 = 𝐼0 cos(𝜔𝑡)

RMS = 𝐼0√
2

Resistors
Assume 𝐼 = 𝐼0 cos(𝜔𝑡). By ohm’s law,

𝑉 = 𝐼𝑅 = 𝐼0𝑅 cos(𝜔𝑡)
𝑉 = 𝑉0 cos(𝜔𝑡)

.

Therefore, the voltage is in phase with the current for the resistor.

Inductor
Assume 𝐼 = 𝐼0 cos(𝜔𝑡).

Then

𝑉 = 𝐿d𝐼
d𝑡

= −𝜔𝐼0𝐿 sin(𝜔𝑡)

𝑉 = 𝑉0 cos(𝜔𝑡 + 𝜋
2
)

And furthermore 𝑉0 = 𝜔𝐿𝐼0.

Notice that the current is lagging the voltage by 90°.

𝑉0 = 𝐼0𝑋𝐿. 𝑋𝐿 is called the inductive reactance and is in units of ohms.

𝑋𝐿 = 𝜔𝐿 = 2𝜋𝑓𝜔

Capacitor
𝐼 = 𝐼0 cos(𝜔𝑡)

Find the voltage across the capacitor.
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𝑉 = 𝑄
𝐶

, 𝑄 = ∫
𝑡

0
𝐼(𝑡′)d𝑡′ = 𝐼0

𝜔
sin(𝜔𝑡)

𝑉 = 𝑉0 cos(𝜔𝑡 − 𝜋
2
)

And 𝑉0 = 𝐼0
𝜔𝐶

𝑋𝐶  is called the capacitive reactance:

𝑋𝐶 = 1
𝜔𝐶

= 1
2𝜋𝑓𝐶

Comparison

𝑅 is independent of frequency. For an inductor, as 𝜔 → ∞, the current becomes smaller and
smaller. For a capacitor, and 𝜔 → 0, there is no current.

For a combo RLC AC circuit, things get complicated.

𝑉 (𝑡) = 𝑉𝑅(𝑡) + 𝑉𝐿(𝑡) + 𝑉𝐶(𝑡)

But:

𝑉0 ≠ 𝑉𝑅0 + 𝑉𝐿0 + 𝑉𝐶0

The current is the same through all the elements, and the voltage always adds.

After some time, the phase portrait has rotated by 𝜔. But all the angles between the components
are maintained, so all you have to do is project the voltages down to the 𝑥-axis.

Magnetic Force
For a moving charge:

⃗𝐹 = 𝑞 ⃗𝑣 × �⃗�

For a straight wire segment with current:

⃗𝐹 = 𝐼 ⃗𝓁 × �⃗�

This can be made infinitesimal:

d ⃗𝐹 = 𝐼 d ⃗𝓁 × �⃗�

Problems
• Magnetic field acting on a moving charge
‣ Circular motion in a uniform charge
‣ Velocity selector/mass spectrometer
‣ Helical motion
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• Magnetic field acting on a current-carrying wire
‣ magnetic force on a floating wire
‣ force on a rectangular loop due to magnetic field
‣ force on current carrying wire

Biot-Savart Law

d�⃗� = 𝜇0𝐼
4𝜋

d ⃗𝓁 × �̂�
𝑟2

Ampere’s Law

∮ �⃗� ⋅ d ⃗𝓁 = 𝜇0𝐼enclosed

This is an integral around the edge of some closed loop.

This implies

𝐵 = 𝜇0𝐼
2𝜋𝑟

For the magnetic field due to current in a straight wire.

For a solenoid

𝐵inside = 𝜇0𝑛𝐼
𝐵outside = 0

𝑛 is the number of wraps per unit length.

Problems
• Using 𝐵 = 𝜇0

2𝜋𝑟
‣ force between 2 parallel wires
‣ force on a loop of current due to a field from a long straight wire

• Using Biot-Savart law
‣ Deriving magnetic field for long, straight wire

• Ampere’s law
‣ Calculate the magnetic field for when you have symmetry

Faraday’s Law of Induction
Magnetic flux is

Φ𝐵 = ∫ �⃗� ⋅ d ⃗𝐴

The emf is then

ℰ = −dΦ𝐵
d𝑡

The general form is then

∮ ⃗𝐸 ⋅ d ⃗𝓁 = −dΦ𝐵
d𝑡
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Problems
• Faraday’s Law
‣ Induced emf in a square loop pulled away from a wire
‣ Induced emf in a loop with a changing area
‣ Loop moving in a magnetic field
‣ Changing magnetic field induces current

…more

Inductance

ℰ2 = −𝑁2
dΦ21
d𝑡

Φ21 is the flux through coil 2 due to the field produced by coil 1. Then, mutual inductance is:

ℰ2 = −𝑀21
d𝐼1
d𝑡

𝑀 = 𝑁2Φ21
𝐼1

= 𝑁1Φ12
𝐼2

Self-inductance is:

𝐿 = 𝑁Φ𝐵
𝐼

Then, ℰ = −𝐿d𝐼
d𝑡 .

Notice how resistors disappear energy, but inductors do not. They just store the current in the
magnetic field, to be used later (when the current decreases again to zero).

Then this implies the magnetic energy density:

𝑢 = 𝐵2

2𝜇0

Inductors, as a circuit element, are used to oppose sudden changes in current by storing energy
in the magnetic field.

Circuits with inductors
R-L circuit: Current decay is 𝐼(𝑡) = 𝐼0𝑒−𝑡/𝜏  and current growth is 𝐼(𝑡) = 𝐼0(1 − 𝑒−𝑡/𝜏). 𝜏 = 𝐿/𝑅
and 𝐼0 = ℰ/𝑅.

R-C circuit: 𝐼(𝑡) = 𝐼0 sin(𝜔𝑡 + 𝜑), 𝐼0 = 𝜔𝑄0, 𝜔 = 1√
𝐿𝐶

, 𝑞(𝑡) = 𝑄0 cos(𝜔𝑡 + 𝜑)

RLC circuits will not be on the exam, but they do have an analytic solution.

Problems
• Mutual inductance
‣ Solenoid and coil
‣ Wire and rectangular loop

• Self-inductance
‣ Solenoid
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Displacement Current
Ampere’s Law relates a line integral to the current through a surface. This is for any surface, not
just a flat one.

Ampere’s law’s is incomplete, as can be shown by considering the process of charging a
capacitor.

When a capacitor charges, current exists to charge the capacitor. But if you change your surface
to go through the space between the capacitor plates, you get zero, a different result, which is
a contradiction.

This is corrected with displacement current:

𝐼𝐷 = 𝜀0
dΦ𝐸
d𝑡

To fully correct Ampere’s Law:

∮ �⃗� ⋅ d ⃗𝓁 = 𝜇0(𝐼enclosed + 𝜀0
dΦ𝐸
d𝑡

)

The above is for 𝜀 = 𝜀0.

Example
Suppose that a circular parallel-plate capacitor has radius 𝑅 and plate separation 𝑑. A sinusoidal
potential difference 𝑉 = 𝑉0 sin(𝜔𝑡) is applied across the plates.

1. In the region between the plates, show that the magnitude of the induced magnetic field is
given by 𝐵 = 𝐵0(𝑟) cos(𝜔𝑡) where 𝐵 = 𝐵0(𝑟) is a function of the radial distance 𝑟 from the
capacitor’s central axis.

𝑉 = 𝐸𝑑 and 𝑉 = 𝑉
𝑑 .

∮ �⃗� ⋅ d ⃗𝓁 = 𝜇0(𝐼enclosed + 𝜀0
dΦ𝐸
d𝑡

)

𝐵2𝜋𝑟path = 𝜇0𝜀0𝜋𝑟2
flux

d𝐸
d𝑡

Then

d𝐸
d𝑡

= 1
𝑑

d𝑉
d𝑡

= 𝑉0𝜔
𝑑

cos(𝜔𝑡)

and so

𝐵 = 𝜇0𝜀0𝑟2
flux

2𝑟path
(𝜔𝑉0

𝑑
) cos(𝜔𝑡)
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